feat: create v2-prep branch with comprehensive planning

Restructured project for V2 refactor:

**Structure Changes:**
- Moved all V1 code to orig/ folder (preserved with git mv)
- Created docs/planning/ directory
- Added orig/README_V1.md explaining V1 preservation

**Planning Documents:**
- 00_V2_MASTER_PLAN.md: Complete architecture overview
  - Executive summary of critical V1 issues
  - High-level component architecture diagrams
  - 5-phase implementation roadmap
  - Success metrics and risk mitigation

- 07_TASK_BREAKDOWN.md: Atomic task breakdown
  - 99+ hours of detailed tasks
  - Every task < 2 hours (atomic)
  - Clear dependencies and success criteria
  - Organized by implementation phase

**V2 Key Improvements:**
- Per-exchange parsers (factory pattern)
- Multi-layer strict validation
- Multi-index pool cache
- Background validation pipeline
- Comprehensive observability

**Critical Issues Addressed:**
- Zero address tokens (strict validation + cache enrichment)
- Parsing accuracy (protocol-specific parsers)
- No audit trail (background validation channel)
- Inefficient lookups (multi-index cache)
- Stats disconnection (event-driven metrics)

Next Steps:
1. Review planning documents
2. Begin Phase 1: Foundation (P1-001 through P1-010)
3. Implement parsers in Phase 2
4. Build cache system in Phase 3
5. Add validation pipeline in Phase 4
6. Migrate and test in Phase 5

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Administrator
2025-11-10 10:14:26 +01:00
parent 1773daffe7
commit 803de231ba
411 changed files with 20390 additions and 8680 deletions

View File

@@ -0,0 +1,387 @@
package arbitrum
import (
"encoding/binary"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/fraktal/mev-beta/internal/logger"
)
// createValidRLPTransaction creates a valid RLP-encoded transaction for testing
func createValidRLPTransaction() []byte {
tx := types.NewTransaction(
0, // nonce
common.HexToAddress("0x742d35Cc"), // to
big.NewInt(1000), // value
21000, // gas
big.NewInt(1000000000), // gas price
[]byte{}, // data
)
rlpData, _ := tx.MarshalBinary()
return rlpData
}
// createValidSwapCalldata creates valid swap function calldata
func createValidSwapCalldata() []byte {
// Create properly formatted ABI-encoded calldata for swapExactTokensForTokens
data := make([]byte, 256) // More space for proper ABI encoding
// amountIn (1000 tokens) - right-aligned in 32 bytes
amountIn := big.NewInt(1000000000000000000)
amountInBytes := amountIn.Bytes()
copy(data[32-len(amountInBytes):32], amountInBytes)
// amountOutMin (900 tokens) - right-aligned in 32 bytes
amountOutMin := big.NewInt(900000000000000000)
amountOutMinBytes := amountOutMin.Bytes()
copy(data[64-len(amountOutMinBytes):64], amountOutMinBytes)
// path offset (0xa0 = 160 decimal, pointer to array) - right-aligned
pathOffset := big.NewInt(160)
pathOffsetBytes := pathOffset.Bytes()
copy(data[96-len(pathOffsetBytes):96], pathOffsetBytes)
// recipient address - right-aligned in 32 bytes
recipient := common.HexToAddress("0x742d35Cc6635C0532925a3b8D9C12CF345eEE40F")
copy(data[96+12:128], recipient.Bytes())
// deadline - right-aligned in 32 bytes
deadline := big.NewInt(1234567890)
deadlineBytes := deadline.Bytes()
copy(data[160-len(deadlineBytes):160], deadlineBytes)
// Add array length and tokens for path (simplified)
// Array length = 2
arrayLen := big.NewInt(2)
arrayLenBytes := arrayLen.Bytes()
copy(data[192-len(arrayLenBytes):192], arrayLenBytes)
// Token addresses would go here, but we'll keep it simple
return data
}
// createValidExactInputSingleData creates valid exactInputSingle calldata
func createValidExactInputSingleData() []byte {
// Create properly formatted ABI-encoded calldata for exactInputSingle
data := make([]byte, 256) // More space for proper ABI encoding
// tokenIn at position 0-31 (address in last 20 bytes)
copy(data[12:32], common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48").Bytes()) // USDC
// tokenOut at position 32-63 (address in last 20 bytes)
copy(data[44:64], common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2").Bytes()) // WETH
// recipient at position 96-127 (address in last 20 bytes)
copy(data[108:128], common.HexToAddress("0x742d35Cc6635C0532925a3b8D9C12CF345eEE40F").Bytes())
// deadline at position 128-159 (uint64 in last 8 bytes)
binary.BigEndian.PutUint64(data[152:160], 1234567890)
// amountIn at position 160-191
amountIn := big.NewInt(1000000000) // 1000 USDC (6 decimals)
amountInBytes := amountIn.Bytes()
copy(data[192-len(amountInBytes):192], amountInBytes)
return data
}
func TestL2MessageParser_ParseL2Message(t *testing.T) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
tests := []struct {
name string
messageData []byte
messageNumber *big.Int
timestamp uint64
expectError bool
expectedType L2MessageType
}{
{
name: "Empty message",
messageData: []byte{},
messageNumber: big.NewInt(1),
timestamp: 1234567890,
expectError: true,
},
{
name: "Short message",
messageData: []byte{0x00, 0x00, 0x00},
messageNumber: big.NewInt(2),
timestamp: 1234567890,
expectError: true,
},
{
name: "L2 Transaction message",
messageData: append([]byte{0x00, 0x00, 0x00, 0x03}, createValidRLPTransaction()...),
messageNumber: big.NewInt(3),
timestamp: 1234567890,
expectError: false,
expectedType: L2Transaction,
},
{
name: "L2 Batch message",
messageData: append([]byte{0x00, 0x00, 0x00, 0x07}, make([]byte, 64)...),
messageNumber: big.NewInt(4),
timestamp: 1234567890,
expectError: false,
expectedType: L2BatchSubmission,
},
{
name: "Unknown message type",
messageData: append([]byte{0x00, 0x00, 0x00, 0xFF}, make([]byte, 32)...),
messageNumber: big.NewInt(5),
timestamp: 1234567890,
expectError: false,
expectedType: L2Unknown,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := parser.ParseL2Message(tt.messageData, tt.messageNumber, tt.timestamp)
if tt.expectError {
assert.Error(t, err)
return
}
require.NoError(t, err)
assert.NotNil(t, result)
assert.Equal(t, tt.expectedType, result.Type)
assert.Equal(t, tt.messageNumber, result.MessageNumber)
assert.Equal(t, tt.timestamp, result.Timestamp)
})
}
}
func TestL2MessageParser_ParseDEXInteraction(t *testing.T) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
// Create a mock transaction for testing
createMockTx := func(to common.Address, data []byte) *types.Transaction {
return types.NewTransaction(
0,
to,
big.NewInt(0),
21000,
big.NewInt(1000000000),
data,
)
}
tests := []struct {
name string
tx *types.Transaction
expectError bool
expectSwap bool
}{
{
name: "Contract creation transaction",
tx: types.NewContractCreation(0, big.NewInt(0), 21000, big.NewInt(1000000000), []byte{}),
expectError: true,
},
{
name: "Unknown router address",
tx: createMockTx(common.HexToAddress("0x1234567890123456789012345678901234567890"), []byte{0x38, 0xed, 0x17, 0x39}),
expectError: true,
},
{
name: "Uniswap V3 router with exactInputSingle",
tx: createMockTx(
common.HexToAddress("0xE592427A0AEce92De3Edee1F18E0157C05861564"), // Uniswap V3 Router
append([]byte{0x41, 0x4b, 0xf3, 0x89}, createValidExactInputSingleData()...), // exactInputSingle with proper data
),
expectError: false,
expectSwap: true,
},
{
name: "SushiSwap router - expect error due to complex ABI",
tx: createMockTx(
common.HexToAddress("0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506"), // SushiSwap Router
[]byte{0x38, 0xed, 0x17, 0x39}, // swapExactTokensForTokens selector only
),
expectError: true, // Expected to fail due to insufficient ABI data
expectSwap: false,
},
{
name: "Unknown function selector",
tx: createMockTx(
common.HexToAddress("0xE592427A0AEce92De3Edee1F18E0157C05861564"), // Uniswap V3 Router
[]byte{0xFF, 0xFF, 0xFF, 0xFF}, // Unknown selector
),
expectError: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := parser.ParseDEXInteraction(tt.tx)
if tt.expectError {
assert.Error(t, err)
return
}
require.NoError(t, err)
assert.NotNil(t, result)
if tt.expectSwap {
assert.NotEmpty(t, result.Protocol)
assert.Equal(t, *tt.tx.To(), result.Router)
}
})
}
}
func TestL2MessageParser_IsSignificantSwap(t *testing.T) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
tests := []struct {
name string
interaction *DEXInteraction
minAmountUSD float64
expectSignificant bool
}{
{
name: "Small swap - not significant",
interaction: &DEXInteraction{
AmountIn: big.NewInt(100000000000000000), // 0.1 ETH
},
minAmountUSD: 10.0,
expectSignificant: false,
},
{
name: "Large swap - significant",
interaction: &DEXInteraction{
AmountIn: big.NewInt(2000000000000000000), // 2 ETH
},
minAmountUSD: 10.0,
expectSignificant: true,
},
{
name: "Nil amount - not significant",
interaction: &DEXInteraction{
AmountIn: nil,
},
minAmountUSD: 10.0,
expectSignificant: false,
},
{
name: "Zero amount - not significant",
interaction: &DEXInteraction{
AmountIn: big.NewInt(0),
},
minAmountUSD: 10.0,
expectSignificant: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := parser.IsSignificantSwap(tt.interaction, tt.minAmountUSD)
assert.Equal(t, tt.expectSignificant, result)
})
}
}
func TestL2MessageParser_ParseExactInputSingle(t *testing.T) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
// Create test data for exactInputSingle call
// This is a simplified version - real data would be properly ABI encoded
data := make([]byte, 256)
// tokenIn at position 0-31 (address in last 20 bytes)
copy(data[12:32], common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48").Bytes()) // USDC
// tokenOut at position 32-63 (address in last 20 bytes)
copy(data[44:64], common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2").Bytes()) // WETH
// recipient at position 96-127 (address in last 20 bytes)
copy(data[108:128], common.HexToAddress("0x742d35Cc6635C0532925a3b8D9C12CF345eEE40F").Bytes())
// deadline at position 128-159 (uint64 in last 8 bytes)
binary.BigEndian.PutUint64(data[152:160], 1234567890)
// amountIn at position 160-191
amountIn := big.NewInt(1000000000) // 1000 USDC (6 decimals)
amountInBytes := amountIn.Bytes()
copy(data[192-len(amountInBytes):192], amountInBytes)
interaction := &DEXInteraction{}
result, err := parser.parseExactInputSingle(interaction, data)
require.NoError(t, err)
assert.Equal(t, common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"), result.TokenIn)
assert.Equal(t, common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"), result.TokenOut)
assert.Equal(t, common.HexToAddress("0x742d35Cc6635C0532925a3b8D9C12CF345eEE40F"), result.Recipient)
assert.Equal(t, uint64(1234567890), result.Deadline)
// Note: AmountIn comparison might need adjustment based on how the data is packed
}
func TestL2MessageParser_InitialSetup(t *testing.T) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
// Test that we can add and identify known pools
// This test verifies the internal pool tracking functionality
// The parser should have some pre-configured pools
assert.NotNil(t, parser)
// Verify parser was created with proper initialization
assert.NotNil(t, parser.logger)
}
func BenchmarkL2MessageParser_ParseL2Message(b *testing.B) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
// Create test message data
messageData := append([]byte{0x00, 0x00, 0x00, 0x03}, make([]byte, 100)...)
messageNumber := big.NewInt(1)
timestamp := uint64(1234567890)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := parser.ParseL2Message(messageData, messageNumber, timestamp)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkL2MessageParser_ParseDEXInteraction(b *testing.B) {
logger := logger.New("info", "text", "")
parser := NewL2MessageParser(logger)
// Create mock transaction
tx := types.NewTransaction(
0,
common.HexToAddress("0xE592427A0AEce92De3Edee1F18E0157C05861564"), // Uniswap V3 Router
big.NewInt(0),
21000,
big.NewInt(1000000000),
[]byte{0x41, 0x4b, 0xf3, 0x89}, // exactInputSingle selector
)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := parser.ParseDEXInteraction(tx)
if err != nil && err.Error() != "insufficient data for exactInputSingle" {
b.Fatal(err)
}
}
}