feat: create v2-prep branch with comprehensive planning

Restructured project for V2 refactor:

**Structure Changes:**
- Moved all V1 code to orig/ folder (preserved with git mv)
- Created docs/planning/ directory
- Added orig/README_V1.md explaining V1 preservation

**Planning Documents:**
- 00_V2_MASTER_PLAN.md: Complete architecture overview
  - Executive summary of critical V1 issues
  - High-level component architecture diagrams
  - 5-phase implementation roadmap
  - Success metrics and risk mitigation

- 07_TASK_BREAKDOWN.md: Atomic task breakdown
  - 99+ hours of detailed tasks
  - Every task < 2 hours (atomic)
  - Clear dependencies and success criteria
  - Organized by implementation phase

**V2 Key Improvements:**
- Per-exchange parsers (factory pattern)
- Multi-layer strict validation
- Multi-index pool cache
- Background validation pipeline
- Comprehensive observability

**Critical Issues Addressed:**
- Zero address tokens (strict validation + cache enrichment)
- Parsing accuracy (protocol-specific parsers)
- No audit trail (background validation channel)
- Inefficient lookups (multi-index cache)
- Stats disconnection (event-driven metrics)

Next Steps:
1. Review planning documents
2. Begin Phase 1: Foundation (P1-001 through P1-010)
3. Implement parsers in Phase 2
4. Build cache system in Phase 3
5. Add validation pipeline in Phase 4
6. Migrate and test in Phase 5

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Administrator
2025-11-10 10:14:26 +01:00
parent 1773daffe7
commit 803de231ba
411 changed files with 20390 additions and 8680 deletions

View File

@@ -0,0 +1,502 @@
package performance
import (
"context"
"fmt"
"sync"
"time"
"github.com/fraktal/mev-beta/internal/logger"
)
// PerformanceOptimizer implements various performance optimization strategies
type PerformanceOptimizer struct {
logger *logger.Logger
// Connection pooling
connectionPools map[string]*ConnectionPool
poolMutex sync.RWMutex
// Adaptive worker scaling
workerManager *AdaptiveWorkerManager
// Smart caching
cacheManager *SmartCacheManager
// Metrics collection
metrics *PerformanceMetrics
}
// ConnectionPool manages a pool of reusable connections
type ConnectionPool struct {
connections chan interface{}
maxSize int
currentSize int
factory func() (interface{}, error)
cleanup func(interface{}) error
mutex sync.Mutex
}
// AdaptiveWorkerManager manages dynamic worker scaling
type AdaptiveWorkerManager struct {
currentWorkers int
maxWorkers int
minWorkers int
targetLatency time.Duration
scaleUpThreshold float64
scaleDownThreshold float64
lastScaleAction time.Time
cooldownPeriod time.Duration
metrics *WorkerMetrics
mutex sync.RWMutex
}
// SmartCacheManager implements intelligent caching with TTL and invalidation
type SmartCacheManager struct {
caches map[string]*CacheInstance
mutex sync.RWMutex
}
// CacheInstance represents a single cache with TTL and size limits
type CacheInstance struct {
data map[string]*CacheEntry
maxSize int
defaultTTL time.Duration
hits uint64
misses uint64
mutex sync.RWMutex
}
// CacheEntry represents a cached item
type CacheEntry struct {
value interface{}
expiry time.Time
lastAccess time.Time
accessCount uint64
}
// PerformanceMetrics tracks various performance metrics
type PerformanceMetrics struct {
TotalRequests uint64
SuccessfulRequests uint64
FailedRequests uint64
AverageLatency time.Duration
P95Latency time.Duration
P99Latency time.Duration
CacheHitRatio float64
ActiveConnections int
ActiveWorkers int
mutex sync.RWMutex
}
// WorkerMetrics tracks worker performance
type WorkerMetrics struct {
TasksProcessed uint64
AverageTaskTime time.Duration
QueueSize int
WorkerUtilization float64
mutex sync.RWMutex
}
// NewPerformanceOptimizer creates a new performance optimizer
func NewPerformanceOptimizer(logger *logger.Logger) *PerformanceOptimizer {
return &PerformanceOptimizer{
logger: logger,
connectionPools: make(map[string]*ConnectionPool),
workerManager: NewAdaptiveWorkerManager(10, 100, 2, 100*time.Millisecond),
cacheManager: NewSmartCacheManager(),
metrics: &PerformanceMetrics{},
}
}
// NewConnectionPool creates a new connection pool
func NewConnectionPool(maxSize int, factory func() (interface{}, error), cleanup func(interface{}) error) *ConnectionPool {
return &ConnectionPool{
connections: make(chan interface{}, maxSize),
maxSize: maxSize,
factory: factory,
cleanup: cleanup,
}
}
// Get retrieves a connection from the pool
func (cp *ConnectionPool) Get() (interface{}, error) {
select {
case conn := <-cp.connections:
return conn, nil
default:
// No available connections, create new one
cp.mutex.Lock()
defer cp.mutex.Unlock()
if cp.currentSize < cp.maxSize {
conn, err := cp.factory()
if err != nil {
return nil, err
}
cp.currentSize++
return conn, nil
}
// Pool is full, wait for available connection
return <-cp.connections, nil
}
}
// Put returns a connection to the pool
func (cp *ConnectionPool) Put(conn interface{}) {
select {
case cp.connections <- conn:
// Successfully returned to pool
default:
// Pool is full, cleanup the connection
if cp.cleanup != nil {
cp.cleanup(conn)
}
cp.mutex.Lock()
cp.currentSize--
cp.mutex.Unlock()
}
}
// NewAdaptiveWorkerManager creates a new adaptive worker manager
func NewAdaptiveWorkerManager(current, max, min int, targetLatency time.Duration) *AdaptiveWorkerManager {
return &AdaptiveWorkerManager{
currentWorkers: current,
maxWorkers: max,
minWorkers: min,
targetLatency: targetLatency,
scaleUpThreshold: 1.5, // Scale up if latency > 1.5x target
scaleDownThreshold: 0.7, // Scale down if latency < 0.7x target
cooldownPeriod: 30 * time.Second,
metrics: &WorkerMetrics{},
}
}
// AdjustWorkerCount adjusts the number of workers based on current performance
func (awm *AdaptiveWorkerManager) AdjustWorkerCount(currentLatency time.Duration, queueSize int) int {
awm.mutex.Lock()
defer awm.mutex.Unlock()
// Check cooldown period
if time.Since(awm.lastScaleAction) < awm.cooldownPeriod {
return awm.currentWorkers
}
latencyRatio := float64(currentLatency) / float64(awm.targetLatency)
// Scale up if latency is too high or queue is building up
if latencyRatio > awm.scaleUpThreshold || queueSize > awm.currentWorkers*2 {
if awm.currentWorkers < awm.maxWorkers {
newCount := awm.currentWorkers + (awm.currentWorkers / 4) // Increase by 25%
if newCount > awm.maxWorkers {
newCount = awm.maxWorkers
}
awm.currentWorkers = newCount
awm.lastScaleAction = time.Now()
return newCount
}
}
// Scale down if latency is too low and queue is empty
if latencyRatio < awm.scaleDownThreshold && queueSize == 0 {
if awm.currentWorkers > awm.minWorkers {
newCount := awm.currentWorkers - (awm.currentWorkers / 6) // Decrease by ~16%
if newCount < awm.minWorkers {
newCount = awm.minWorkers
}
awm.currentWorkers = newCount
awm.lastScaleAction = time.Now()
return newCount
}
}
return awm.currentWorkers
}
// NewSmartCacheManager creates a new smart cache manager
func NewSmartCacheManager() *SmartCacheManager {
return &SmartCacheManager{
caches: make(map[string]*CacheInstance),
}
}
// GetCache retrieves or creates a cache instance
func (scm *SmartCacheManager) GetCache(name string, maxSize int, defaultTTL time.Duration) *CacheInstance {
scm.mutex.RLock()
if cache, exists := scm.caches[name]; exists {
scm.mutex.RUnlock()
return cache
}
scm.mutex.RUnlock()
scm.mutex.Lock()
defer scm.mutex.Unlock()
// Double-check after acquiring write lock
if cache, exists := scm.caches[name]; exists {
return cache
}
cache := &CacheInstance{
data: make(map[string]*CacheEntry),
maxSize: maxSize,
defaultTTL: defaultTTL,
}
scm.caches[name] = cache
// Start cleanup routine for this cache
go cache.startCleanup()
return cache
}
// Get retrieves a value from the cache
func (ci *CacheInstance) Get(key string) (interface{}, bool) {
ci.mutex.RLock()
defer ci.mutex.RUnlock()
entry, exists := ci.data[key]
if !exists {
ci.misses++
return nil, false
}
// Check if expired
if time.Now().After(entry.expiry) {
ci.mutex.RUnlock()
ci.mutex.Lock()
delete(ci.data, key)
ci.mutex.Unlock()
ci.mutex.RLock()
ci.misses++
return nil, false
}
// Update access statistics
entry.lastAccess = time.Now()
entry.accessCount++
ci.hits++
return entry.value, true
}
// Set stores a value in the cache
func (ci *CacheInstance) Set(key string, value interface{}) {
ci.SetWithTTL(key, value, ci.defaultTTL)
}
// SetWithTTL stores a value with custom TTL
func (ci *CacheInstance) SetWithTTL(key string, value interface{}, ttl time.Duration) {
ci.mutex.Lock()
defer ci.mutex.Unlock()
// Check if we need to evict items
if len(ci.data) >= ci.maxSize {
ci.evictLRU()
}
ci.data[key] = &CacheEntry{
value: value,
expiry: time.Now().Add(ttl),
lastAccess: time.Now(),
accessCount: 1,
}
}
// evictLRU evicts the least recently used item
func (ci *CacheInstance) evictLRU() {
var oldestKey string
var oldestTime time.Time
for key, entry := range ci.data {
if oldestKey == "" || entry.lastAccess.Before(oldestTime) {
oldestKey = key
oldestTime = entry.lastAccess
}
}
if oldestKey != "" {
delete(ci.data, oldestKey)
}
}
// startCleanup starts the cleanup routine for expired entries
func (ci *CacheInstance) startCleanup() {
ticker := time.NewTicker(5 * time.Minute)
defer ticker.Stop()
for range ticker.C {
ci.cleanupExpired()
}
}
// cleanupExpired removes expired entries
func (ci *CacheInstance) cleanupExpired() {
ci.mutex.Lock()
defer ci.mutex.Unlock()
now := time.Now()
for key, entry := range ci.data {
if now.After(entry.expiry) {
delete(ci.data, key)
}
}
}
// GetHitRatio returns the cache hit ratio
func (ci *CacheInstance) GetHitRatio() float64 {
ci.mutex.RLock()
defer ci.mutex.RUnlock()
total := ci.hits + ci.misses
if total == 0 {
return 0
}
return float64(ci.hits) / float64(total)
}
// OptimizeForRealTime implements real-time processing optimizations
func (po *PerformanceOptimizer) OptimizeForRealTime(ctx context.Context) {
// Create connection pools for RPC endpoints
po.createRPCConnectionPools()
// Start adaptive worker management
go po.manageWorkerAdaptation(ctx)
// Start cache warming
go po.warmCaches(ctx)
// Start metrics collection
go po.collectMetrics(ctx)
po.logger.Info("Performance optimization started for real-time processing")
}
// createRPCConnectionPools creates connection pools for RPC endpoints
func (po *PerformanceOptimizer) createRPCConnectionPools() {
// Create pool for Arbitrum RPC connections
arbitrumPool := NewConnectionPool(
20, // Max 20 connections
func() (interface{}, error) {
// Factory function to create new RPC connection
// In production, this would create an actual ethclient connection
return "rpc_connection", nil
},
func(conn interface{}) error {
// Cleanup function to close connection
return nil
},
)
po.poolMutex.Lock()
po.connectionPools["arbitrum_rpc"] = arbitrumPool
po.poolMutex.Unlock()
po.logger.Info("Created RPC connection pools")
}
// manageWorkerAdaptation manages adaptive worker scaling
func (po *PerformanceOptimizer) manageWorkerAdaptation(ctx context.Context) {
ticker := time.NewTicker(10 * time.Second)
defer ticker.Stop()
for {
select {
case <-ticker.C:
// Get current metrics
currentLatency := po.metrics.AverageLatency
queueSize := 0 // This would be obtained from actual queue
// Adjust worker count
newWorkerCount := po.workerManager.AdjustWorkerCount(currentLatency, queueSize)
po.logger.Debug(fmt.Sprintf("Adaptive worker scaling: %d workers (latency: %v, queue: %d)",
newWorkerCount, currentLatency, queueSize))
case <-ctx.Done():
return
}
}
}
// warmCaches preloads frequently accessed data into caches
func (po *PerformanceOptimizer) warmCaches(ctx context.Context) {
poolCache := po.cacheManager.GetCache("pools", 1000, 5*time.Minute)
// Warm up with common pool addresses
commonPools := []string{
"0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640", // USDC/WETH V3
"0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc", // USDC/WETH V2
"0x17c14D2c404D167802b16C450d3c99F88F2c4F4d", // USDC/WETH V3 0.3%
}
for _, pool := range commonPools {
// In production, this would fetch real pool data
poolCache.Set(pool, map[string]interface{}{
"warmed": true,
"timestamp": time.Now(),
})
}
po.logger.Info("Cache warming completed")
}
// collectMetrics collects and reports performance metrics
func (po *PerformanceOptimizer) collectMetrics(ctx context.Context) {
ticker := time.NewTicker(30 * time.Second)
defer ticker.Stop()
for {
select {
case <-ticker.C:
po.reportMetrics()
case <-ctx.Done():
return
}
}
}
// reportMetrics reports current performance metrics
func (po *PerformanceOptimizer) reportMetrics() {
po.metrics.mutex.RLock()
defer po.metrics.mutex.RUnlock()
// Calculate cache hit ratios
totalHitRatio := 0.0
cacheCount := 0
po.cacheManager.mutex.RLock()
for name, cache := range po.cacheManager.caches {
hitRatio := cache.GetHitRatio()
totalHitRatio += hitRatio
cacheCount++
po.logger.Debug(fmt.Sprintf("Cache %s hit ratio: %.2f%%", name, hitRatio*100))
}
po.cacheManager.mutex.RUnlock()
if cacheCount > 0 {
po.metrics.CacheHitRatio = totalHitRatio / float64(cacheCount)
}
po.logger.Info(fmt.Sprintf("🚀 PERFORMANCE METRICS:"))
po.logger.Info(fmt.Sprintf(" Average Latency: %v", po.metrics.AverageLatency))
po.logger.Info(fmt.Sprintf(" Cache Hit Ratio: %.2f%%", po.metrics.CacheHitRatio*100))
po.logger.Info(fmt.Sprintf(" Active Workers: %d", po.workerManager.currentWorkers))
po.logger.Info(fmt.Sprintf(" Total Requests: %d", po.metrics.TotalRequests))
po.logger.Info(fmt.Sprintf(" Success Rate: %.2f%%",
float64(po.metrics.SuccessfulRequests)/float64(po.metrics.TotalRequests)*100))
}
// GetConnectionPool retrieves a connection pool by name
func (po *PerformanceOptimizer) GetConnectionPool(name string) *ConnectionPool {
po.poolMutex.RLock()
defer po.poolMutex.RUnlock()
return po.connectionPools[name]
}
// GetCache retrieves a cache instance
func (po *PerformanceOptimizer) GetCache(name string, maxSize int, defaultTTL time.Duration) *CacheInstance {
return po.cacheManager.GetCache(name, maxSize, defaultTTL)
}

View File

@@ -0,0 +1,392 @@
package performance
import (
"math/big"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/holiman/uint256"
"github.com/fraktal/mev-beta/pkg/events"
)
// ObjectPool manages reusable objects to reduce garbage collection pressure
type ObjectPool struct {
bigIntPool sync.Pool
uint256Pool sync.Pool
eventPool sync.Pool
addressPool sync.Pool
slicePool sync.Pool
}
// NewObjectPool creates a new object pool for performance optimization
func NewObjectPool() *ObjectPool {
return &ObjectPool{
bigIntPool: sync.Pool{
New: func() interface{} {
return new(big.Int)
},
},
uint256Pool: sync.Pool{
New: func() interface{} {
return new(uint256.Int)
},
},
eventPool: sync.Pool{
New: func() interface{} {
return &events.Event{}
},
},
addressPool: sync.Pool{
New: func() interface{} {
return make([]common.Address, 0, 8)
},
},
slicePool: sync.Pool{
New: func() interface{} {
return make([]byte, 0, 1024)
},
},
}
}
// GetBigInt returns a reusable big.Int from the pool
func (p *ObjectPool) GetBigInt() *big.Int {
bi := p.bigIntPool.Get().(*big.Int)
bi.SetInt64(0) // Reset to zero
return bi
}
// PutBigInt returns a big.Int to the pool for reuse
func (p *ObjectPool) PutBigInt(bi *big.Int) {
if bi != nil {
p.bigIntPool.Put(bi)
}
}
// GetUint256 returns a reusable uint256.Int from the pool
func (p *ObjectPool) GetUint256() *uint256.Int {
ui := p.uint256Pool.Get().(*uint256.Int)
ui.SetUint64(0) // Reset to zero
return ui
}
// PutUint256 returns a uint256.Int to the pool for reuse
func (p *ObjectPool) PutUint256(ui *uint256.Int) {
if ui != nil {
p.uint256Pool.Put(ui)
}
}
// GetEvent returns a reusable Event from the pool
func (p *ObjectPool) GetEvent() *events.Event {
event := p.eventPool.Get().(*events.Event)
// Reset event fields
*event = events.Event{}
return event
}
// PutEvent returns an Event to the pool for reuse
func (p *ObjectPool) PutEvent(event *events.Event) {
if event != nil {
p.eventPool.Put(event)
}
}
// GetAddressSlice returns a reusable address slice from the pool
func (p *ObjectPool) GetAddressSlice() []common.Address {
slice := p.addressPool.Get().([]common.Address)
return slice[:0] // Reset length to 0 but keep capacity
}
// PutAddressSlice returns an address slice to the pool for reuse
func (p *ObjectPool) PutAddressSlice(slice []common.Address) {
if slice != nil && cap(slice) > 0 {
p.addressPool.Put(slice)
}
}
// GetByteSlice returns a reusable byte slice from the pool
func (p *ObjectPool) GetByteSlice() []byte {
slice := p.slicePool.Get().([]byte)
return slice[:0] // Reset length to 0 but keep capacity
}
// PutByteSlice returns a byte slice to the pool for reuse
func (p *ObjectPool) PutByteSlice(slice []byte) {
if slice != nil && cap(slice) > 0 {
p.slicePool.Put(slice)
}
}
// LockFreeRingBuffer implements a lock-free ring buffer for high-performance message passing
type LockFreeRingBuffer struct {
buffer []interface{}
mask uint64
head uint64 // Padding to prevent false sharing
_ [7]uint64
tail uint64 // Padding to prevent false sharing
_ [7]uint64
}
// NewLockFreeRingBuffer creates a new lock-free ring buffer
// Size must be a power of 2
func NewLockFreeRingBuffer(size uint64) *LockFreeRingBuffer {
// Ensure size is power of 2
if size&(size-1) != 0 {
// Find next power of 2
size = 1 << (64 - countLeadingZeros(size-1))
}
return &LockFreeRingBuffer{
buffer: make([]interface{}, size),
mask: size - 1,
}
}
// countLeadingZeros counts leading zeros in a uint64
func countLeadingZeros(x uint64) int {
if x == 0 {
return 64
}
n := 0
if x <= 0x00000000FFFFFFFF {
n += 32
x <<= 32
}
if x <= 0x0000FFFFFFFFFFFF {
n += 16
x <<= 16
}
if x <= 0x00FFFFFFFFFFFFFF {
n += 8
x <<= 8
}
if x <= 0x0FFFFFFFFFFFFFFF {
n += 4
x <<= 4
}
if x <= 0x3FFFFFFFFFFFFFFF {
n += 2
x <<= 2
}
if x <= 0x7FFFFFFFFFFFFFFF {
n += 1
}
return n
}
// FastCache implements a high-performance cache with minimal locking
type FastCache struct {
shards []*CacheShard
mask uint64
}
// CacheShard represents a single cache shard to reduce lock contention
type CacheShard struct {
mu sync.RWMutex
data map[string]*CacheItem
size int
limit int
}
// CacheItem represents a cached item with metadata
type CacheItem struct {
Value interface{}
AccessTime int64
Cost int
}
// NewFastCache creates a new high-performance cache
func NewFastCache(shardCount, itemsPerShard int) *FastCache {
// Ensure shard count is power of 2
if shardCount&(shardCount-1) != 0 {
shardCount = 1 << (32 - countLeadingZeros32(uint32(shardCount-1)))
}
shards := make([]*CacheShard, shardCount)
for i := 0; i < shardCount; i++ {
shards[i] = &CacheShard{
data: make(map[string]*CacheItem, itemsPerShard),
limit: itemsPerShard,
}
}
return &FastCache{
shards: shards,
mask: uint64(shardCount - 1),
}
}
// countLeadingZeros32 counts leading zeros in a uint32
func countLeadingZeros32(x uint32) int {
if x == 0 {
return 32
}
n := 0
if x <= 0x0000FFFF {
n += 16
x <<= 16
}
if x <= 0x00FFFFFF {
n += 8
x <<= 8
}
if x <= 0x0FFFFFFF {
n += 4
x <<= 4
}
if x <= 0x3FFFFFFF {
n += 2
x <<= 2
}
if x <= 0x7FFFFFFF {
n += 1
}
return n
}
// hash computes a hash for the key
func (c *FastCache) hash(key string) uint64 {
hash := uint64(0)
for _, b := range key {
hash = hash*31 + uint64(b)
}
return hash
}
// getShard returns the shard for a given key
func (c *FastCache) getShard(key string) *CacheShard {
return c.shards[c.hash(key)&c.mask]
}
// Get retrieves an item from the cache
func (c *FastCache) Get(key string) (interface{}, bool) {
shard := c.getShard(key)
shard.mu.RLock()
item, exists := shard.data[key]
shard.mu.RUnlock()
if exists {
return item.Value, true
}
return nil, false
}
// Set stores an item in the cache
func (c *FastCache) Set(key string, value interface{}, cost int) {
shard := c.getShard(key)
shard.mu.Lock()
// Check if we need to evict items
if shard.size >= shard.limit && shard.data[key] == nil {
c.evictOldest(shard)
}
shard.data[key] = &CacheItem{
Value: value,
Cost: cost,
}
shard.size++
shard.mu.Unlock()
}
// evictOldest removes the oldest item from a shard
func (c *FastCache) evictOldest(shard *CacheShard) {
var oldestKey string
var oldestTime int64 = 1<<63 - 1
for key, item := range shard.data {
if item.AccessTime < oldestTime {
oldestTime = item.AccessTime
oldestKey = key
}
}
if oldestKey != "" {
delete(shard.data, oldestKey)
shard.size--
}
}
// BatchProcessor processes items in batches for better performance
type BatchProcessor struct {
batchSize int
flushTimeout int64 // nanoseconds
buffer []interface{}
processor func([]interface{}) error
mu sync.Mutex
}
// NewBatchProcessor creates a new batch processor
func NewBatchProcessor(batchSize int, flushTimeoutNs int64, processor func([]interface{}) error) *BatchProcessor {
return &BatchProcessor{
batchSize: batchSize,
flushTimeout: flushTimeoutNs,
buffer: make([]interface{}, 0, batchSize),
processor: processor,
}
}
// Add adds an item to the batch processor
func (bp *BatchProcessor) Add(item interface{}) error {
bp.mu.Lock()
defer bp.mu.Unlock()
bp.buffer = append(bp.buffer, item)
if len(bp.buffer) >= bp.batchSize {
return bp.flushLocked()
}
return nil
}
// Flush processes all items in the buffer immediately
func (bp *BatchProcessor) Flush() error {
bp.mu.Lock()
defer bp.mu.Unlock()
return bp.flushLocked()
}
// flushLocked processes items while holding the lock
func (bp *BatchProcessor) flushLocked() error {
if len(bp.buffer) == 0 {
return nil
}
batch := make([]interface{}, len(bp.buffer))
copy(batch, bp.buffer)
bp.buffer = bp.buffer[:0] // Reset buffer
return bp.processor(batch)
}
// MemoryOptimizer provides utilities for memory optimization
type MemoryOptimizer struct {
pools *ObjectPool
}
// NewMemoryOptimizer creates a new memory optimizer
func NewMemoryOptimizer() *MemoryOptimizer {
return &MemoryOptimizer{
pools: NewObjectPool(),
}
}
// ProcessWithPools processes data using object pools to minimize allocations
func (mo *MemoryOptimizer) ProcessWithPools(data []byte, processor func(*big.Int, *uint256.Int, []byte) error) error {
bigInt := mo.pools.GetBigInt()
uint256Int := mo.pools.GetUint256()
workBuffer := mo.pools.GetByteSlice()
defer func() {
mo.pools.PutBigInt(bigInt)
mo.pools.PutUint256(uint256Int)
mo.pools.PutByteSlice(workBuffer)
}()
return processor(bigInt, uint256Int, workBuffer)
}