feat: create v2-prep branch with comprehensive planning
Restructured project for V2 refactor: **Structure Changes:** - Moved all V1 code to orig/ folder (preserved with git mv) - Created docs/planning/ directory - Added orig/README_V1.md explaining V1 preservation **Planning Documents:** - 00_V2_MASTER_PLAN.md: Complete architecture overview - Executive summary of critical V1 issues - High-level component architecture diagrams - 5-phase implementation roadmap - Success metrics and risk mitigation - 07_TASK_BREAKDOWN.md: Atomic task breakdown - 99+ hours of detailed tasks - Every task < 2 hours (atomic) - Clear dependencies and success criteria - Organized by implementation phase **V2 Key Improvements:** - Per-exchange parsers (factory pattern) - Multi-layer strict validation - Multi-index pool cache - Background validation pipeline - Comprehensive observability **Critical Issues Addressed:** - Zero address tokens (strict validation + cache enrichment) - Parsing accuracy (protocol-specific parsers) - No audit trail (background validation channel) - Inefficient lookups (multi-index cache) - Stats disconnection (event-driven metrics) Next Steps: 1. Review planning documents 2. Begin Phase 1: Foundation (P1-001 through P1-010) 3. Implement parsers in Phase 2 4. Build cache system in Phase 3 5. Add validation pipeline in Phase 4 6. Migrate and test in Phase 5 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
502
orig/pkg/performance/optimizer.go
Normal file
502
orig/pkg/performance/optimizer.go
Normal file
@@ -0,0 +1,502 @@
|
||||
package performance
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/fraktal/mev-beta/internal/logger"
|
||||
)
|
||||
|
||||
// PerformanceOptimizer implements various performance optimization strategies
|
||||
type PerformanceOptimizer struct {
|
||||
logger *logger.Logger
|
||||
|
||||
// Connection pooling
|
||||
connectionPools map[string]*ConnectionPool
|
||||
poolMutex sync.RWMutex
|
||||
|
||||
// Adaptive worker scaling
|
||||
workerManager *AdaptiveWorkerManager
|
||||
|
||||
// Smart caching
|
||||
cacheManager *SmartCacheManager
|
||||
|
||||
// Metrics collection
|
||||
metrics *PerformanceMetrics
|
||||
}
|
||||
|
||||
// ConnectionPool manages a pool of reusable connections
|
||||
type ConnectionPool struct {
|
||||
connections chan interface{}
|
||||
maxSize int
|
||||
currentSize int
|
||||
factory func() (interface{}, error)
|
||||
cleanup func(interface{}) error
|
||||
mutex sync.Mutex
|
||||
}
|
||||
|
||||
// AdaptiveWorkerManager manages dynamic worker scaling
|
||||
type AdaptiveWorkerManager struct {
|
||||
currentWorkers int
|
||||
maxWorkers int
|
||||
minWorkers int
|
||||
targetLatency time.Duration
|
||||
scaleUpThreshold float64
|
||||
scaleDownThreshold float64
|
||||
lastScaleAction time.Time
|
||||
cooldownPeriod time.Duration
|
||||
metrics *WorkerMetrics
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// SmartCacheManager implements intelligent caching with TTL and invalidation
|
||||
type SmartCacheManager struct {
|
||||
caches map[string]*CacheInstance
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// CacheInstance represents a single cache with TTL and size limits
|
||||
type CacheInstance struct {
|
||||
data map[string]*CacheEntry
|
||||
maxSize int
|
||||
defaultTTL time.Duration
|
||||
hits uint64
|
||||
misses uint64
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// CacheEntry represents a cached item
|
||||
type CacheEntry struct {
|
||||
value interface{}
|
||||
expiry time.Time
|
||||
lastAccess time.Time
|
||||
accessCount uint64
|
||||
}
|
||||
|
||||
// PerformanceMetrics tracks various performance metrics
|
||||
type PerformanceMetrics struct {
|
||||
TotalRequests uint64
|
||||
SuccessfulRequests uint64
|
||||
FailedRequests uint64
|
||||
AverageLatency time.Duration
|
||||
P95Latency time.Duration
|
||||
P99Latency time.Duration
|
||||
CacheHitRatio float64
|
||||
ActiveConnections int
|
||||
ActiveWorkers int
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// WorkerMetrics tracks worker performance
|
||||
type WorkerMetrics struct {
|
||||
TasksProcessed uint64
|
||||
AverageTaskTime time.Duration
|
||||
QueueSize int
|
||||
WorkerUtilization float64
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// NewPerformanceOptimizer creates a new performance optimizer
|
||||
func NewPerformanceOptimizer(logger *logger.Logger) *PerformanceOptimizer {
|
||||
return &PerformanceOptimizer{
|
||||
logger: logger,
|
||||
connectionPools: make(map[string]*ConnectionPool),
|
||||
workerManager: NewAdaptiveWorkerManager(10, 100, 2, 100*time.Millisecond),
|
||||
cacheManager: NewSmartCacheManager(),
|
||||
metrics: &PerformanceMetrics{},
|
||||
}
|
||||
}
|
||||
|
||||
// NewConnectionPool creates a new connection pool
|
||||
func NewConnectionPool(maxSize int, factory func() (interface{}, error), cleanup func(interface{}) error) *ConnectionPool {
|
||||
return &ConnectionPool{
|
||||
connections: make(chan interface{}, maxSize),
|
||||
maxSize: maxSize,
|
||||
factory: factory,
|
||||
cleanup: cleanup,
|
||||
}
|
||||
}
|
||||
|
||||
// Get retrieves a connection from the pool
|
||||
func (cp *ConnectionPool) Get() (interface{}, error) {
|
||||
select {
|
||||
case conn := <-cp.connections:
|
||||
return conn, nil
|
||||
default:
|
||||
// No available connections, create new one
|
||||
cp.mutex.Lock()
|
||||
defer cp.mutex.Unlock()
|
||||
|
||||
if cp.currentSize < cp.maxSize {
|
||||
conn, err := cp.factory()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
cp.currentSize++
|
||||
return conn, nil
|
||||
}
|
||||
|
||||
// Pool is full, wait for available connection
|
||||
return <-cp.connections, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Put returns a connection to the pool
|
||||
func (cp *ConnectionPool) Put(conn interface{}) {
|
||||
select {
|
||||
case cp.connections <- conn:
|
||||
// Successfully returned to pool
|
||||
default:
|
||||
// Pool is full, cleanup the connection
|
||||
if cp.cleanup != nil {
|
||||
cp.cleanup(conn)
|
||||
}
|
||||
cp.mutex.Lock()
|
||||
cp.currentSize--
|
||||
cp.mutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// NewAdaptiveWorkerManager creates a new adaptive worker manager
|
||||
func NewAdaptiveWorkerManager(current, max, min int, targetLatency time.Duration) *AdaptiveWorkerManager {
|
||||
return &AdaptiveWorkerManager{
|
||||
currentWorkers: current,
|
||||
maxWorkers: max,
|
||||
minWorkers: min,
|
||||
targetLatency: targetLatency,
|
||||
scaleUpThreshold: 1.5, // Scale up if latency > 1.5x target
|
||||
scaleDownThreshold: 0.7, // Scale down if latency < 0.7x target
|
||||
cooldownPeriod: 30 * time.Second,
|
||||
metrics: &WorkerMetrics{},
|
||||
}
|
||||
}
|
||||
|
||||
// AdjustWorkerCount adjusts the number of workers based on current performance
|
||||
func (awm *AdaptiveWorkerManager) AdjustWorkerCount(currentLatency time.Duration, queueSize int) int {
|
||||
awm.mutex.Lock()
|
||||
defer awm.mutex.Unlock()
|
||||
|
||||
// Check cooldown period
|
||||
if time.Since(awm.lastScaleAction) < awm.cooldownPeriod {
|
||||
return awm.currentWorkers
|
||||
}
|
||||
|
||||
latencyRatio := float64(currentLatency) / float64(awm.targetLatency)
|
||||
|
||||
// Scale up if latency is too high or queue is building up
|
||||
if latencyRatio > awm.scaleUpThreshold || queueSize > awm.currentWorkers*2 {
|
||||
if awm.currentWorkers < awm.maxWorkers {
|
||||
newCount := awm.currentWorkers + (awm.currentWorkers / 4) // Increase by 25%
|
||||
if newCount > awm.maxWorkers {
|
||||
newCount = awm.maxWorkers
|
||||
}
|
||||
awm.currentWorkers = newCount
|
||||
awm.lastScaleAction = time.Now()
|
||||
return newCount
|
||||
}
|
||||
}
|
||||
|
||||
// Scale down if latency is too low and queue is empty
|
||||
if latencyRatio < awm.scaleDownThreshold && queueSize == 0 {
|
||||
if awm.currentWorkers > awm.minWorkers {
|
||||
newCount := awm.currentWorkers - (awm.currentWorkers / 6) // Decrease by ~16%
|
||||
if newCount < awm.minWorkers {
|
||||
newCount = awm.minWorkers
|
||||
}
|
||||
awm.currentWorkers = newCount
|
||||
awm.lastScaleAction = time.Now()
|
||||
return newCount
|
||||
}
|
||||
}
|
||||
|
||||
return awm.currentWorkers
|
||||
}
|
||||
|
||||
// NewSmartCacheManager creates a new smart cache manager
|
||||
func NewSmartCacheManager() *SmartCacheManager {
|
||||
return &SmartCacheManager{
|
||||
caches: make(map[string]*CacheInstance),
|
||||
}
|
||||
}
|
||||
|
||||
// GetCache retrieves or creates a cache instance
|
||||
func (scm *SmartCacheManager) GetCache(name string, maxSize int, defaultTTL time.Duration) *CacheInstance {
|
||||
scm.mutex.RLock()
|
||||
if cache, exists := scm.caches[name]; exists {
|
||||
scm.mutex.RUnlock()
|
||||
return cache
|
||||
}
|
||||
scm.mutex.RUnlock()
|
||||
|
||||
scm.mutex.Lock()
|
||||
defer scm.mutex.Unlock()
|
||||
|
||||
// Double-check after acquiring write lock
|
||||
if cache, exists := scm.caches[name]; exists {
|
||||
return cache
|
||||
}
|
||||
|
||||
cache := &CacheInstance{
|
||||
data: make(map[string]*CacheEntry),
|
||||
maxSize: maxSize,
|
||||
defaultTTL: defaultTTL,
|
||||
}
|
||||
scm.caches[name] = cache
|
||||
|
||||
// Start cleanup routine for this cache
|
||||
go cache.startCleanup()
|
||||
|
||||
return cache
|
||||
}
|
||||
|
||||
// Get retrieves a value from the cache
|
||||
func (ci *CacheInstance) Get(key string) (interface{}, bool) {
|
||||
ci.mutex.RLock()
|
||||
defer ci.mutex.RUnlock()
|
||||
|
||||
entry, exists := ci.data[key]
|
||||
if !exists {
|
||||
ci.misses++
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// Check if expired
|
||||
if time.Now().After(entry.expiry) {
|
||||
ci.mutex.RUnlock()
|
||||
ci.mutex.Lock()
|
||||
delete(ci.data, key)
|
||||
ci.mutex.Unlock()
|
||||
ci.mutex.RLock()
|
||||
ci.misses++
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// Update access statistics
|
||||
entry.lastAccess = time.Now()
|
||||
entry.accessCount++
|
||||
ci.hits++
|
||||
|
||||
return entry.value, true
|
||||
}
|
||||
|
||||
// Set stores a value in the cache
|
||||
func (ci *CacheInstance) Set(key string, value interface{}) {
|
||||
ci.SetWithTTL(key, value, ci.defaultTTL)
|
||||
}
|
||||
|
||||
// SetWithTTL stores a value with custom TTL
|
||||
func (ci *CacheInstance) SetWithTTL(key string, value interface{}, ttl time.Duration) {
|
||||
ci.mutex.Lock()
|
||||
defer ci.mutex.Unlock()
|
||||
|
||||
// Check if we need to evict items
|
||||
if len(ci.data) >= ci.maxSize {
|
||||
ci.evictLRU()
|
||||
}
|
||||
|
||||
ci.data[key] = &CacheEntry{
|
||||
value: value,
|
||||
expiry: time.Now().Add(ttl),
|
||||
lastAccess: time.Now(),
|
||||
accessCount: 1,
|
||||
}
|
||||
}
|
||||
|
||||
// evictLRU evicts the least recently used item
|
||||
func (ci *CacheInstance) evictLRU() {
|
||||
var oldestKey string
|
||||
var oldestTime time.Time
|
||||
|
||||
for key, entry := range ci.data {
|
||||
if oldestKey == "" || entry.lastAccess.Before(oldestTime) {
|
||||
oldestKey = key
|
||||
oldestTime = entry.lastAccess
|
||||
}
|
||||
}
|
||||
|
||||
if oldestKey != "" {
|
||||
delete(ci.data, oldestKey)
|
||||
}
|
||||
}
|
||||
|
||||
// startCleanup starts the cleanup routine for expired entries
|
||||
func (ci *CacheInstance) startCleanup() {
|
||||
ticker := time.NewTicker(5 * time.Minute)
|
||||
defer ticker.Stop()
|
||||
|
||||
for range ticker.C {
|
||||
ci.cleanupExpired()
|
||||
}
|
||||
}
|
||||
|
||||
// cleanupExpired removes expired entries
|
||||
func (ci *CacheInstance) cleanupExpired() {
|
||||
ci.mutex.Lock()
|
||||
defer ci.mutex.Unlock()
|
||||
|
||||
now := time.Now()
|
||||
for key, entry := range ci.data {
|
||||
if now.After(entry.expiry) {
|
||||
delete(ci.data, key)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// GetHitRatio returns the cache hit ratio
|
||||
func (ci *CacheInstance) GetHitRatio() float64 {
|
||||
ci.mutex.RLock()
|
||||
defer ci.mutex.RUnlock()
|
||||
|
||||
total := ci.hits + ci.misses
|
||||
if total == 0 {
|
||||
return 0
|
||||
}
|
||||
return float64(ci.hits) / float64(total)
|
||||
}
|
||||
|
||||
// OptimizeForRealTime implements real-time processing optimizations
|
||||
func (po *PerformanceOptimizer) OptimizeForRealTime(ctx context.Context) {
|
||||
// Create connection pools for RPC endpoints
|
||||
po.createRPCConnectionPools()
|
||||
|
||||
// Start adaptive worker management
|
||||
go po.manageWorkerAdaptation(ctx)
|
||||
|
||||
// Start cache warming
|
||||
go po.warmCaches(ctx)
|
||||
|
||||
// Start metrics collection
|
||||
go po.collectMetrics(ctx)
|
||||
|
||||
po.logger.Info("Performance optimization started for real-time processing")
|
||||
}
|
||||
|
||||
// createRPCConnectionPools creates connection pools for RPC endpoints
|
||||
func (po *PerformanceOptimizer) createRPCConnectionPools() {
|
||||
// Create pool for Arbitrum RPC connections
|
||||
arbitrumPool := NewConnectionPool(
|
||||
20, // Max 20 connections
|
||||
func() (interface{}, error) {
|
||||
// Factory function to create new RPC connection
|
||||
// In production, this would create an actual ethclient connection
|
||||
return "rpc_connection", nil
|
||||
},
|
||||
func(conn interface{}) error {
|
||||
// Cleanup function to close connection
|
||||
return nil
|
||||
},
|
||||
)
|
||||
|
||||
po.poolMutex.Lock()
|
||||
po.connectionPools["arbitrum_rpc"] = arbitrumPool
|
||||
po.poolMutex.Unlock()
|
||||
|
||||
po.logger.Info("Created RPC connection pools")
|
||||
}
|
||||
|
||||
// manageWorkerAdaptation manages adaptive worker scaling
|
||||
func (po *PerformanceOptimizer) manageWorkerAdaptation(ctx context.Context) {
|
||||
ticker := time.NewTicker(10 * time.Second)
|
||||
defer ticker.Stop()
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
// Get current metrics
|
||||
currentLatency := po.metrics.AverageLatency
|
||||
queueSize := 0 // This would be obtained from actual queue
|
||||
|
||||
// Adjust worker count
|
||||
newWorkerCount := po.workerManager.AdjustWorkerCount(currentLatency, queueSize)
|
||||
|
||||
po.logger.Debug(fmt.Sprintf("Adaptive worker scaling: %d workers (latency: %v, queue: %d)",
|
||||
newWorkerCount, currentLatency, queueSize))
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// warmCaches preloads frequently accessed data into caches
|
||||
func (po *PerformanceOptimizer) warmCaches(ctx context.Context) {
|
||||
poolCache := po.cacheManager.GetCache("pools", 1000, 5*time.Minute)
|
||||
|
||||
// Warm up with common pool addresses
|
||||
commonPools := []string{
|
||||
"0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640", // USDC/WETH V3
|
||||
"0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc", // USDC/WETH V2
|
||||
"0x17c14D2c404D167802b16C450d3c99F88F2c4F4d", // USDC/WETH V3 0.3%
|
||||
}
|
||||
|
||||
for _, pool := range commonPools {
|
||||
// In production, this would fetch real pool data
|
||||
poolCache.Set(pool, map[string]interface{}{
|
||||
"warmed": true,
|
||||
"timestamp": time.Now(),
|
||||
})
|
||||
}
|
||||
|
||||
po.logger.Info("Cache warming completed")
|
||||
}
|
||||
|
||||
// collectMetrics collects and reports performance metrics
|
||||
func (po *PerformanceOptimizer) collectMetrics(ctx context.Context) {
|
||||
ticker := time.NewTicker(30 * time.Second)
|
||||
defer ticker.Stop()
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
po.reportMetrics()
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reportMetrics reports current performance metrics
|
||||
func (po *PerformanceOptimizer) reportMetrics() {
|
||||
po.metrics.mutex.RLock()
|
||||
defer po.metrics.mutex.RUnlock()
|
||||
|
||||
// Calculate cache hit ratios
|
||||
totalHitRatio := 0.0
|
||||
cacheCount := 0
|
||||
|
||||
po.cacheManager.mutex.RLock()
|
||||
for name, cache := range po.cacheManager.caches {
|
||||
hitRatio := cache.GetHitRatio()
|
||||
totalHitRatio += hitRatio
|
||||
cacheCount++
|
||||
|
||||
po.logger.Debug(fmt.Sprintf("Cache %s hit ratio: %.2f%%", name, hitRatio*100))
|
||||
}
|
||||
po.cacheManager.mutex.RUnlock()
|
||||
|
||||
if cacheCount > 0 {
|
||||
po.metrics.CacheHitRatio = totalHitRatio / float64(cacheCount)
|
||||
}
|
||||
|
||||
po.logger.Info(fmt.Sprintf("🚀 PERFORMANCE METRICS:"))
|
||||
po.logger.Info(fmt.Sprintf(" Average Latency: %v", po.metrics.AverageLatency))
|
||||
po.logger.Info(fmt.Sprintf(" Cache Hit Ratio: %.2f%%", po.metrics.CacheHitRatio*100))
|
||||
po.logger.Info(fmt.Sprintf(" Active Workers: %d", po.workerManager.currentWorkers))
|
||||
po.logger.Info(fmt.Sprintf(" Total Requests: %d", po.metrics.TotalRequests))
|
||||
po.logger.Info(fmt.Sprintf(" Success Rate: %.2f%%",
|
||||
float64(po.metrics.SuccessfulRequests)/float64(po.metrics.TotalRequests)*100))
|
||||
}
|
||||
|
||||
// GetConnectionPool retrieves a connection pool by name
|
||||
func (po *PerformanceOptimizer) GetConnectionPool(name string) *ConnectionPool {
|
||||
po.poolMutex.RLock()
|
||||
defer po.poolMutex.RUnlock()
|
||||
return po.connectionPools[name]
|
||||
}
|
||||
|
||||
// GetCache retrieves a cache instance
|
||||
func (po *PerformanceOptimizer) GetCache(name string, maxSize int, defaultTTL time.Duration) *CacheInstance {
|
||||
return po.cacheManager.GetCache(name, maxSize, defaultTTL)
|
||||
}
|
||||
Reference in New Issue
Block a user