Initial commit: Set up MEV bot project structure
This commit is contained in:
154
pkg/monitor/monitor.go
Normal file
154
pkg/monitor/monitor.go
Normal file
@@ -0,0 +1,154 @@
|
||||
package monitor
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
"math/big"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/ethereum/go-ethereum/ethclient"
|
||||
)
|
||||
|
||||
// ArbitrumMonitor monitors the Arbitrum sequencer for transactions
|
||||
type ArbitrumMonitor struct {
|
||||
client *ethclient.Client
|
||||
rpcEndpoint string
|
||||
pollInterval time.Duration
|
||||
running bool
|
||||
}
|
||||
|
||||
// NewArbitrumMonitor creates a new Arbitrum monitor
|
||||
func NewArbitrumMonitor(rpcEndpoint string, pollInterval time.Duration) (*ArbitrumMonitor, error) {
|
||||
client, err := ethclient.Dial(rpcEndpoint)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to connect to Arbitrum node: %v", err)
|
||||
}
|
||||
|
||||
return &ArbitrumMonitor{
|
||||
client: client,
|
||||
rpcEndpoint: rpcEndpoint,
|
||||
pollInterval: pollInterval,
|
||||
running: false,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Start begins monitoring the Arbitrum sequencer
|
||||
func (m *ArbitrumMonitor) Start(ctx context.Context) error {
|
||||
log.Println("Starting Arbitrum sequencer monitoring...")
|
||||
m.running = true
|
||||
|
||||
// Get the latest block to start from
|
||||
header, err := m.client.HeaderByNumber(ctx, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get latest block header: %v", err)
|
||||
}
|
||||
|
||||
lastBlock := header.Number.Uint64()
|
||||
log.Printf("Starting from block: %d", lastBlock)
|
||||
|
||||
for m.running {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
m.running = false
|
||||
return nil
|
||||
case <-time.After(m.pollInterval):
|
||||
// Get the latest block
|
||||
header, err := m.client.HeaderByNumber(ctx, nil)
|
||||
if err != nil {
|
||||
log.Printf("Failed to get latest block header: %v", err)
|
||||
continue
|
||||
}
|
||||
|
||||
currentBlock := header.Number.Uint64()
|
||||
|
||||
// Process blocks from lastBlock+1 to currentBlock
|
||||
for blockNum := lastBlock + 1; blockNum <= currentBlock; blockNum++ {
|
||||
if err := m.processBlock(ctx, blockNum); err != nil {
|
||||
log.Printf("Failed to process block %d: %v", blockNum, err)
|
||||
}
|
||||
}
|
||||
|
||||
lastBlock = currentBlock
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Stop stops the monitor
|
||||
func (m *ArbitrumMonitor) Stop() {
|
||||
m.running = false
|
||||
}
|
||||
|
||||
// processBlock processes a single block for potential swap transactions
|
||||
func (m *ArbitrumMonitor) processBlock(ctx context.Context, blockNumber uint64) error {
|
||||
log.Printf("Processing block %d", blockNumber)
|
||||
|
||||
// Get block by number
|
||||
block, err := m.client.BlockByNumber(ctx, big.NewInt(int64(blockNumber)))
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get block %d: %v", blockNumber, err)
|
||||
}
|
||||
|
||||
// Process each transaction in the block
|
||||
for _, tx := range block.Transactions() {
|
||||
if err := m.processTransaction(ctx, tx); err != nil {
|
||||
log.Printf("Failed to process transaction %s: %v", tx.Hash().Hex(), err)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// processTransaction analyzes a transaction for potential swap opportunities
|
||||
func (m *ArbitrumMonitor) processTransaction(ctx context.Context, tx *types.Transaction) error {
|
||||
// Check if this is a potential swap transaction
|
||||
// This is a simplified check - in practice, you would check for
|
||||
// specific function signatures of Uniswap-like contracts
|
||||
|
||||
// For now, we'll just log all transactions
|
||||
from, err := m.client.TransactionSender(ctx, tx, common.Hash{}, 0)
|
||||
if err != nil {
|
||||
// This can happen for pending transactions
|
||||
from = common.HexToAddress("0x0")
|
||||
}
|
||||
|
||||
log.Printf("Transaction: %s, From: %s, To: %s, Value: %s ETH",
|
||||
tx.Hash().Hex(),
|
||||
from.Hex(),
|
||||
func() string {
|
||||
if tx.To() != nil {
|
||||
return tx.To().Hex()
|
||||
}
|
||||
return "contract creation"
|
||||
}(),
|
||||
new(big.Float).Quo(new(big.Float).SetInt(tx.Value()), big.NewFloat(1e18)).String(),
|
||||
)
|
||||
|
||||
// TODO: Add logic to detect swap transactions and analyze them
|
||||
// This would involve:
|
||||
// 1. Checking if the transaction is calling a Uniswap-like contract
|
||||
// 2. Decoding the swap function call
|
||||
// 3. Extracting the token addresses and amounts
|
||||
// 4. Calculating potential price impact
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// GetPendingTransactions retrieves pending transactions from the mempool
|
||||
func (m *ArbitrumMonitor) GetPendingTransactions(ctx context.Context) ([]*types.Transaction, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you might need to use a different approach to access pending transactions
|
||||
|
||||
// Query for pending transactions
|
||||
txs := make([]*types.Transaction, 0)
|
||||
|
||||
// Note: ethclient doesn't directly expose pending transactions
|
||||
// You might need to use a different approach or a custom RPC call
|
||||
|
||||
return txs, nil
|
||||
}
|
||||
122
pkg/scanner/scanner.go
Normal file
122
pkg/scanner/scanner.go
Normal file
@@ -0,0 +1,122 @@
|
||||
package scanner
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
// MarketScanner scans markets for price movement opportunities
|
||||
type MarketScanner struct {
|
||||
// Configuration fields would go here
|
||||
}
|
||||
|
||||
// NewMarketScanner creates a new market scanner
|
||||
func NewMarketScanner() *MarketScanner {
|
||||
return &MarketScanner{}
|
||||
}
|
||||
|
||||
// PriceMovement represents a potential price movement
|
||||
type PriceMovement struct {
|
||||
Token0 string // Token address
|
||||
Token1 string // Token address
|
||||
Pool string // Pool address
|
||||
AmountIn *big.Int // Amount of token being swapped in
|
||||
AmountOut *big.Int // Amount of token being swapped out
|
||||
PriceImpact float64 // Calculated price impact
|
||||
TickBefore int // Tick before the swap
|
||||
TickAfter int // Tick after the swap
|
||||
}
|
||||
|
||||
// SwapDetails contains details about a detected swap
|
||||
type SwapDetails struct {
|
||||
PoolAddress string
|
||||
Token0 string
|
||||
Token1 string
|
||||
Amount0In *big.Int
|
||||
Amount0Out *big.Int
|
||||
Amount1In *big.Int
|
||||
Amount1Out *big.Int
|
||||
SqrtPriceX96 *uint256.Int
|
||||
Liquidity *uint256.Int
|
||||
Tick int
|
||||
}
|
||||
|
||||
// AnalyzeSwap analyzes a swap to determine if it's large enough to move the price
|
||||
func (s *MarketScanner) AnalyzeSwap(swap SwapDetails) (*PriceMovement, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would need to:
|
||||
// 1. Calculate the price before the swap
|
||||
// 2. Calculate the price after the swap
|
||||
// 3. Determine the price impact
|
||||
|
||||
priceMovement := &PriceMovement{
|
||||
Token0: swap.Token0,
|
||||
Token1: swap.Token1,
|
||||
Pool: swap.PoolAddress,
|
||||
AmountIn: new(big.Int).Add(swap.Amount0In, swap.Amount1In),
|
||||
AmountOut: new(big.Int).Add(swap.Amount0Out, swap.Amount1Out),
|
||||
TickBefore: swap.Tick,
|
||||
// TickAfter would be calculated based on the swap size and liquidity
|
||||
}
|
||||
|
||||
// Calculate price impact (simplified)
|
||||
// In practice, this would involve more complex calculations
|
||||
if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 {
|
||||
impact := new(big.Float).Quo(
|
||||
new(big.Float).SetInt(priceMovement.AmountOut),
|
||||
new(big.Float).SetInt(priceMovement.AmountIn),
|
||||
)
|
||||
priceImpact, _ := impact.Float64()
|
||||
priceMovement.PriceImpact = priceImpact
|
||||
}
|
||||
|
||||
return priceMovement, nil
|
||||
}
|
||||
|
||||
// IsSignificantMovement determines if a price movement is significant enough to exploit
|
||||
func (s *MarketScanner) IsSignificantMovement(movement *PriceMovement, threshold float64) bool {
|
||||
// Check if the price impact is above our threshold
|
||||
return movement.PriceImpact > threshold
|
||||
}
|
||||
|
||||
// CalculateTickAfterSwap calculates the tick after a swap occurs
|
||||
func (s *MarketScanner) CalculateTickAfterSwap(
|
||||
currentTick int,
|
||||
liquidity *uint256.Int,
|
||||
amountIn *big.Int,
|
||||
zeroForOne bool, // true if swapping token0 for token1
|
||||
) int {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would need to use the Uniswap V3 math formulas
|
||||
|
||||
// The actual calculation would involve:
|
||||
// 1. Converting amounts to sqrt prices
|
||||
// 2. Using the liquidity to determine the price movement
|
||||
// 3. Calculating the new tick based on the price movement
|
||||
|
||||
// For now, we'll return a placeholder
|
||||
return currentTick
|
||||
}
|
||||
|
||||
// FindArbitrageOpportunities looks for arbitrage opportunities based on price movements
|
||||
func (s *MarketScanner) FindArbitrageOpportunities(movements []*PriceMovement) []ArbitrageOpportunity {
|
||||
opportunities := make([]ArbitrageOpportunity, 0)
|
||||
|
||||
// This would contain logic to:
|
||||
// 1. Compare prices across different pools
|
||||
// 2. Calculate potential profit after gas costs
|
||||
// 3. Identify triangular arbitrage opportunities
|
||||
// 4. Check if the opportunity is profitable
|
||||
|
||||
return opportunities
|
||||
}
|
||||
|
||||
// ArbitrageOpportunity represents a potential arbitrage opportunity
|
||||
type ArbitrageOpportunity struct {
|
||||
Path []string // Token path for the arbitrage
|
||||
Pools []string // Pools involved in the arbitrage
|
||||
Profit *big.Int // Estimated profit in wei
|
||||
GasEstimate *big.Int // Estimated gas cost
|
||||
ROI float64 // Return on investment percentage
|
||||
}
|
||||
130
pkg/uniswap/pricing.go
Normal file
130
pkg/uniswap/pricing.go
Normal file
@@ -0,0 +1,130 @@
|
||||
package uniswap
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
const (
|
||||
// Q96 represents 2^96 used in Uniswap V3 sqrtPriceX96 calculations
|
||||
Q96 = 79228162514264337593543950336 // 2^96
|
||||
|
||||
// Tick spacing for different fee tiers
|
||||
LowTickSpacing = 10
|
||||
MediumTickSpacing = 60
|
||||
HighTickSpacing = 200
|
||||
)
|
||||
|
||||
// SqrtPriceX96ToPrice converts sqrtPriceX96 to a price
|
||||
// Price is represented as token1/token0
|
||||
func SqrtPriceX96ToPrice(sqrtPriceX96 *big.Int) *big.Float {
|
||||
// price = (sqrtPriceX96 / 2^96)^2
|
||||
// price = sqrtPriceX96^2 / 2^192
|
||||
|
||||
// Convert to big.Float for precision
|
||||
sqrtPrice := new(big.Float).SetInt(sqrtPriceX96)
|
||||
|
||||
// Calculate sqrtPrice^2
|
||||
price := new(big.Float).Mul(sqrtPrice, sqrtPrice)
|
||||
|
||||
// Divide by 2^192 (which is (2^96)^2)
|
||||
q192 := new(big.Float).SetInt(new(big.Int).Exp(big.NewInt(2), big.NewInt(192), nil))
|
||||
price.Quo(price, q192)
|
||||
|
||||
return price
|
||||
}
|
||||
|
||||
// PriceToSqrtPriceX96 converts a price to sqrtPriceX96
|
||||
func PriceToSqrtPriceX96(price *big.Float) *big.Int {
|
||||
// sqrtPriceX96 = sqrt(price) * 2^96
|
||||
|
||||
// Calculate sqrt(price)
|
||||
sqrtPrice := new(big.Float).Sqrt(price)
|
||||
|
||||
// Multiply by 2^96
|
||||
q96 := new(big.Float).SetInt(new(big.Int).Exp(big.NewInt(2), big.NewInt(96), nil))
|
||||
sqrtPrice.Mul(sqrtPrice, q96)
|
||||
|
||||
// Convert to big.Int
|
||||
sqrtPriceX96 := new(big.Int)
|
||||
sqrtPrice.Int(sqrtPriceX96)
|
||||
|
||||
return sqrtPriceX96
|
||||
}
|
||||
|
||||
// TickToSqrtPriceX96 converts a tick to sqrtPriceX96
|
||||
func TickToSqrtPriceX96(tick int) *big.Int {
|
||||
// sqrtPriceX96 = 1.0001^(tick/2) * 2^96
|
||||
|
||||
// Calculate 1.0001^(tick/2)
|
||||
base := new(big.Float).SetFloat64(1.0001)
|
||||
tickF := new(big.Float).SetFloat64(float64(tick) / 2.0)
|
||||
power := new(big.Float).Pow(base, tickF)
|
||||
|
||||
// Multiply by 2^96
|
||||
q96 := new(big.Float).SetInt(new(big.Int).Exp(big.NewInt(2), big.NewInt(96), nil))
|
||||
sqrtPrice := new(big.Float).Mul(power, q96)
|
||||
|
||||
// Convert to big.Int
|
||||
sqrtPriceX96 := new(big.Int)
|
||||
sqrtPrice.Int(sqrtPriceX96)
|
||||
|
||||
return sqrtPriceX96
|
||||
}
|
||||
|
||||
// SqrtPriceX96ToTick converts sqrtPriceX96 to a tick
|
||||
func SqrtPriceX96ToTick(sqrtPriceX96 *big.Int) int {
|
||||
// tick = log_1.0001(sqrtPriceX96 / 2^96)^2
|
||||
// tick = log_1.0001(price)
|
||||
// tick = 2 * log_1.0001(sqrtPriceX96 / 2^96)
|
||||
|
||||
if sqrtPriceX96.Cmp(big.NewInt(0)) <= 0 {
|
||||
return 0 // Invalid input
|
||||
}
|
||||
|
||||
// Convert to big.Float
|
||||
sqrtPrice := new(big.Float).SetInt(sqrtPriceX96)
|
||||
q96 := new(big.Float).SetInt(new(big.Int).SetInt64(Q96))
|
||||
|
||||
// Calculate sqrtPriceX96 / 2^96
|
||||
ratio := new(big.Float).Quo(sqrtPrice, q96)
|
||||
|
||||
// Calculate (sqrtPriceX96 / 2^96)^2 to get price
|
||||
price := new(big.Float).Mul(ratio, ratio)
|
||||
|
||||
// Calculate log_1.0001(price)
|
||||
// log_1.0001(x) = ln(x) / ln(1.0001)
|
||||
lnPrice := new(big.Float).Log(price)
|
||||
lnBase := new(big.Float).Log(new(big.Float).SetFloat64(1.0001))
|
||||
logRatio := new(big.Float).Quo(lnPrice, lnBase)
|
||||
|
||||
// Convert to int
|
||||
tick, _ := logRatio.Int64()
|
||||
|
||||
return int(tick)
|
||||
}
|
||||
|
||||
// GetTickAtSqrtPrice calculates the tick for a given sqrtPriceX96 using uint256
|
||||
func GetTickAtSqrtPrice(sqrtPriceX96 *uint256.Int) int {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would use a more precise logarithmic calculation
|
||||
|
||||
// Convert to big.Int for calculation
|
||||
sqrtPriceBig := sqrtPriceX96.ToBig()
|
||||
return SqrtPriceX96ToTick(sqrtPriceBig)
|
||||
}
|
||||
|
||||
// GetNextTick calculates the next initialized tick
|
||||
func GetNextTick(currentTick int, tickSpacing int) int {
|
||||
// Round down to nearest tick spacing
|
||||
tick := ((currentTick / tickSpacing) + 1) * tickSpacing
|
||||
return tick
|
||||
}
|
||||
|
||||
// GetPreviousTick calculates the previous initialized tick
|
||||
func GetPreviousTick(currentTick int, tickSpacing int) int {
|
||||
// Round down to nearest tick spacing
|
||||
tick := (currentTick / tickSpacing) * tickSpacing
|
||||
return tick
|
||||
}
|
||||
Reference in New Issue
Block a user