feat(core): implement core MEV bot functionality with market scanning and Uniswap V3 pricing
Co-authored-by: Qwen-Coder <qwen-coder@alibabacloud.com>
This commit is contained in:
425
vendor/github.com/ethereum/go-ethereum/metrics/sample.go
generated
vendored
Normal file
425
vendor/github.com/ethereum/go-ethereum/metrics/sample.go
generated
vendored
Normal file
@@ -0,0 +1,425 @@
|
||||
package metrics
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"slices"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
const rescaleThreshold = time.Hour
|
||||
|
||||
// Sample maintains a statistically-significant selection of values from
|
||||
// a stream.
|
||||
type Sample interface {
|
||||
Snapshot() *sampleSnapshot
|
||||
Clear()
|
||||
Update(int64)
|
||||
}
|
||||
|
||||
var (
|
||||
_ Sample = (*ExpDecaySample)(nil)
|
||||
_ Sample = (*UniformSample)(nil)
|
||||
_ Sample = (*resettingSample)(nil)
|
||||
)
|
||||
|
||||
// sampleSnapshot is a read-only copy of a Sample.
|
||||
type sampleSnapshot struct {
|
||||
count int64
|
||||
values []int64
|
||||
|
||||
max int64
|
||||
min int64
|
||||
mean float64
|
||||
sum int64
|
||||
variance float64
|
||||
}
|
||||
|
||||
// newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using
|
||||
// precalculated sums to avoid iterating the values
|
||||
func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot {
|
||||
if len(values) == 0 {
|
||||
return &sampleSnapshot{
|
||||
count: count,
|
||||
values: values,
|
||||
}
|
||||
}
|
||||
return &sampleSnapshot{
|
||||
count: count,
|
||||
values: values,
|
||||
max: max,
|
||||
min: min,
|
||||
mean: float64(sum) / float64(len(values)),
|
||||
sum: sum,
|
||||
}
|
||||
}
|
||||
|
||||
// newSampleSnapshot creates a read-only sampleSnapShot, and calculates some
|
||||
// numbers.
|
||||
func newSampleSnapshot(count int64, values []int64) *sampleSnapshot {
|
||||
var (
|
||||
max int64 = math.MinInt64
|
||||
min int64 = math.MaxInt64
|
||||
sum int64
|
||||
)
|
||||
for _, v := range values {
|
||||
sum += v
|
||||
if v > max {
|
||||
max = v
|
||||
}
|
||||
if v < min {
|
||||
min = v
|
||||
}
|
||||
}
|
||||
return newSampleSnapshotPrecalculated(count, values, min, max, sum)
|
||||
}
|
||||
|
||||
// Count returns the count of inputs at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Count() int64 { return s.count }
|
||||
|
||||
// Max returns the maximal value at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Max() int64 { return s.max }
|
||||
|
||||
// Mean returns the mean value at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Mean() float64 { return s.mean }
|
||||
|
||||
// Min returns the minimal value at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Min() int64 { return s.min }
|
||||
|
||||
// Percentile returns an arbitrary percentile of values at the time the
|
||||
// snapshot was taken.
|
||||
func (s *sampleSnapshot) Percentile(p float64) float64 {
|
||||
return SamplePercentile(s.values, p)
|
||||
}
|
||||
|
||||
// Percentiles returns a slice of arbitrary percentiles of values at the time
|
||||
// the snapshot was taken.
|
||||
func (s *sampleSnapshot) Percentiles(ps []float64) []float64 {
|
||||
return CalculatePercentiles(s.values, ps)
|
||||
}
|
||||
|
||||
// Size returns the size of the sample at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Size() int { return len(s.values) }
|
||||
|
||||
// StdDev returns the standard deviation of values at the time the snapshot was
|
||||
// taken.
|
||||
func (s *sampleSnapshot) StdDev() float64 {
|
||||
if s.variance == 0.0 {
|
||||
s.variance = SampleVariance(s.mean, s.values)
|
||||
}
|
||||
return math.Sqrt(s.variance)
|
||||
}
|
||||
|
||||
// Sum returns the sum of values at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Sum() int64 { return s.sum }
|
||||
|
||||
// Values returns a copy of the values in the sample.
|
||||
func (s *sampleSnapshot) Values() []int64 {
|
||||
return slices.Clone(s.values)
|
||||
}
|
||||
|
||||
// Variance returns the variance of values at the time the snapshot was taken.
|
||||
func (s *sampleSnapshot) Variance() float64 {
|
||||
if s.variance == 0.0 {
|
||||
s.variance = SampleVariance(s.mean, s.values)
|
||||
}
|
||||
return s.variance
|
||||
}
|
||||
|
||||
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
|
||||
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
|
||||
// Decay Model for Streaming Systems".
|
||||
//
|
||||
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
|
||||
type ExpDecaySample struct {
|
||||
alpha float64
|
||||
count int64
|
||||
mutex sync.Mutex
|
||||
reservoirSize int
|
||||
t0, t1 time.Time
|
||||
values *expDecaySampleHeap
|
||||
rand *rand.Rand
|
||||
}
|
||||
|
||||
// NewExpDecaySample constructs a new exponentially-decaying sample with the
|
||||
// given reservoir size and alpha.
|
||||
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
|
||||
s := &ExpDecaySample{
|
||||
alpha: alpha,
|
||||
reservoirSize: reservoirSize,
|
||||
t0: time.Now(),
|
||||
values: newExpDecaySampleHeap(reservoirSize),
|
||||
}
|
||||
s.t1 = s.t0.Add(rescaleThreshold)
|
||||
return s
|
||||
}
|
||||
|
||||
// SetRand sets the random source (useful in tests)
|
||||
func (s *ExpDecaySample) SetRand(prng *rand.Rand) Sample {
|
||||
s.rand = prng
|
||||
return s
|
||||
}
|
||||
|
||||
// Clear clears all samples.
|
||||
func (s *ExpDecaySample) Clear() {
|
||||
s.mutex.Lock()
|
||||
defer s.mutex.Unlock()
|
||||
s.count = 0
|
||||
s.t0 = time.Now()
|
||||
s.t1 = s.t0.Add(rescaleThreshold)
|
||||
s.values.Clear()
|
||||
}
|
||||
|
||||
// Snapshot returns a read-only copy of the sample.
|
||||
func (s *ExpDecaySample) Snapshot() *sampleSnapshot {
|
||||
s.mutex.Lock()
|
||||
defer s.mutex.Unlock()
|
||||
var (
|
||||
samples = s.values.Values()
|
||||
values = make([]int64, len(samples))
|
||||
max int64 = math.MinInt64
|
||||
min int64 = math.MaxInt64
|
||||
sum int64
|
||||
)
|
||||
for i, item := range samples {
|
||||
v := item.v
|
||||
values[i] = v
|
||||
sum += v
|
||||
if v > max {
|
||||
max = v
|
||||
}
|
||||
if v < min {
|
||||
min = v
|
||||
}
|
||||
}
|
||||
return newSampleSnapshotPrecalculated(s.count, values, min, max, sum)
|
||||
}
|
||||
|
||||
// Update samples a new value.
|
||||
func (s *ExpDecaySample) Update(v int64) {
|
||||
if !metricsEnabled {
|
||||
return
|
||||
}
|
||||
s.update(time.Now(), v)
|
||||
}
|
||||
|
||||
// update samples a new value at a particular timestamp. This is a method all
|
||||
// its own to facilitate testing.
|
||||
func (s *ExpDecaySample) update(t time.Time, v int64) {
|
||||
s.mutex.Lock()
|
||||
defer s.mutex.Unlock()
|
||||
s.count++
|
||||
if s.values.Size() == s.reservoirSize {
|
||||
s.values.Pop()
|
||||
}
|
||||
var f64 float64
|
||||
if s.rand != nil {
|
||||
f64 = s.rand.Float64()
|
||||
} else {
|
||||
f64 = rand.Float64()
|
||||
}
|
||||
s.values.Push(expDecaySample{
|
||||
k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / f64,
|
||||
v: v,
|
||||
})
|
||||
if t.After(s.t1) {
|
||||
values := s.values.Values()
|
||||
t0 := s.t0
|
||||
s.values.Clear()
|
||||
s.t0 = t
|
||||
s.t1 = s.t0.Add(rescaleThreshold)
|
||||
for _, v := range values {
|
||||
v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
|
||||
s.values.Push(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SamplePercentile returns an arbitrary percentile of the slice of int64.
|
||||
func SamplePercentile(values []int64, p float64) float64 {
|
||||
return CalculatePercentiles(values, []float64{p})[0]
|
||||
}
|
||||
|
||||
// CalculatePercentiles returns a slice of arbitrary percentiles of the slice of
|
||||
// int64. This method returns interpolated results, so e.g. if there are only two
|
||||
// values, [0, 10], a 50% percentile will land between them.
|
||||
//
|
||||
// Note: As a side-effect, this method will also sort the slice of values.
|
||||
// Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50.
|
||||
func CalculatePercentiles(values []int64, ps []float64) []float64 {
|
||||
scores := make([]float64, len(ps))
|
||||
size := len(values)
|
||||
if size == 0 {
|
||||
return scores
|
||||
}
|
||||
slices.Sort(values)
|
||||
for i, p := range ps {
|
||||
pos := p * float64(size+1)
|
||||
|
||||
if pos < 1.0 {
|
||||
scores[i] = float64(values[0])
|
||||
} else if pos >= float64(size) {
|
||||
scores[i] = float64(values[size-1])
|
||||
} else {
|
||||
lower := float64(values[int(pos)-1])
|
||||
upper := float64(values[int(pos)])
|
||||
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
|
||||
}
|
||||
}
|
||||
return scores
|
||||
}
|
||||
|
||||
// SampleVariance returns the variance of the slice of int64.
|
||||
func SampleVariance(mean float64, values []int64) float64 {
|
||||
if len(values) == 0 {
|
||||
return 0.0
|
||||
}
|
||||
var sum float64
|
||||
for _, v := range values {
|
||||
d := float64(v) - mean
|
||||
sum += d * d
|
||||
}
|
||||
return sum / float64(len(values))
|
||||
}
|
||||
|
||||
// UniformSample implements a uniform sample using Vitter's Algorithm R.
|
||||
//
|
||||
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
|
||||
type UniformSample struct {
|
||||
count int64
|
||||
mutex sync.Mutex
|
||||
reservoirSize int
|
||||
values []int64
|
||||
rand *rand.Rand
|
||||
}
|
||||
|
||||
// NewUniformSample constructs a new uniform sample with the given reservoir
|
||||
// size.
|
||||
func NewUniformSample(reservoirSize int) Sample {
|
||||
return &UniformSample{
|
||||
reservoirSize: reservoirSize,
|
||||
values: make([]int64, 0, reservoirSize),
|
||||
}
|
||||
}
|
||||
|
||||
// SetRand sets the random source (useful in tests)
|
||||
func (s *UniformSample) SetRand(prng *rand.Rand) Sample {
|
||||
s.rand = prng
|
||||
return s
|
||||
}
|
||||
|
||||
// Clear clears all samples.
|
||||
func (s *UniformSample) Clear() {
|
||||
s.mutex.Lock()
|
||||
defer s.mutex.Unlock()
|
||||
s.count = 0
|
||||
clear(s.values)
|
||||
}
|
||||
|
||||
// Snapshot returns a read-only copy of the sample.
|
||||
func (s *UniformSample) Snapshot() *sampleSnapshot {
|
||||
s.mutex.Lock()
|
||||
values := slices.Clone(s.values)
|
||||
count := s.count
|
||||
s.mutex.Unlock()
|
||||
return newSampleSnapshot(count, values)
|
||||
}
|
||||
|
||||
// Update samples a new value.
|
||||
func (s *UniformSample) Update(v int64) {
|
||||
if !metricsEnabled {
|
||||
return
|
||||
}
|
||||
s.mutex.Lock()
|
||||
defer s.mutex.Unlock()
|
||||
s.count++
|
||||
if len(s.values) < s.reservoirSize {
|
||||
s.values = append(s.values, v)
|
||||
return
|
||||
}
|
||||
var r int64
|
||||
if s.rand != nil {
|
||||
r = s.rand.Int63n(s.count)
|
||||
} else {
|
||||
r = rand.Int63n(s.count)
|
||||
}
|
||||
if r < int64(len(s.values)) {
|
||||
s.values[int(r)] = v
|
||||
}
|
||||
}
|
||||
|
||||
// expDecaySample represents an individual sample in a heap.
|
||||
type expDecaySample struct {
|
||||
k float64
|
||||
v int64
|
||||
}
|
||||
|
||||
func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
|
||||
return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
|
||||
}
|
||||
|
||||
// expDecaySampleHeap is a min-heap of expDecaySamples.
|
||||
// The internal implementation is copied from the standard library's container/heap
|
||||
type expDecaySampleHeap struct {
|
||||
s []expDecaySample
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) Clear() {
|
||||
h.s = h.s[:0]
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) Push(s expDecaySample) {
|
||||
n := len(h.s)
|
||||
h.s = h.s[0 : n+1]
|
||||
h.s[n] = s
|
||||
h.up(n)
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) Pop() expDecaySample {
|
||||
n := len(h.s) - 1
|
||||
h.s[0], h.s[n] = h.s[n], h.s[0]
|
||||
h.down(0, n)
|
||||
|
||||
n = len(h.s)
|
||||
s := h.s[n-1]
|
||||
h.s = h.s[0 : n-1]
|
||||
return s
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) Size() int {
|
||||
return len(h.s)
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) Values() []expDecaySample {
|
||||
return h.s
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) up(j int) {
|
||||
for {
|
||||
i := (j - 1) / 2 // parent
|
||||
if i == j || !(h.s[j].k < h.s[i].k) {
|
||||
break
|
||||
}
|
||||
h.s[i], h.s[j] = h.s[j], h.s[i]
|
||||
j = i
|
||||
}
|
||||
}
|
||||
|
||||
func (h *expDecaySampleHeap) down(i, n int) {
|
||||
for {
|
||||
j1 := 2*i + 1
|
||||
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
|
||||
break
|
||||
}
|
||||
j := j1 // left child
|
||||
if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
|
||||
j = j2 // = 2*i + 2 // right child
|
||||
}
|
||||
if !(h.s[j].k < h.s[i].k) {
|
||||
break
|
||||
}
|
||||
h.s[i], h.s[j] = h.s[j], h.s[i]
|
||||
i = j
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user