Add enhanced concurrency patterns, rate limiting, market management, and pipeline processing
This commit is contained in:
181
pkg/market/fan.go
Normal file
181
pkg/market/fan.go
Normal file
@@ -0,0 +1,181 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/internal/ratelimit"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
)
|
||||
|
||||
// FanManager manages fan-in/fan-out patterns for multiple data sources
|
||||
type FanManager struct {
|
||||
config *config.Config
|
||||
logger *logger.Logger
|
||||
rateLimiter *ratelimit.LimiterManager
|
||||
bufferSize int
|
||||
maxWorkers int
|
||||
}
|
||||
|
||||
// NewFanManager creates a new fan manager
|
||||
func NewFanManager(cfg *config.Config, logger *logger.Logger, rateLimiter *ratelimit.LimiterManager) *FanManager {
|
||||
return &FanManager{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
rateLimiter: rateLimiter,
|
||||
bufferSize: cfg.Bot.ChannelBufferSize,
|
||||
maxWorkers: cfg.Bot.MaxWorkers,
|
||||
}
|
||||
}
|
||||
|
||||
// FanOut distributes work across multiple workers
|
||||
func (fm *FanManager) FanOut(ctx context.Context, jobs <-chan *types.Transaction, numWorkers int) <-chan *types.Transaction {
|
||||
// Create the output channel
|
||||
out := make(chan *types.Transaction, fm.bufferSize)
|
||||
|
||||
// Create a wait group to wait for all workers
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Start the workers
|
||||
for i := 0; i < numWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func(workerID int) {
|
||||
defer wg.Done()
|
||||
fm.worker(ctx, jobs, out, workerID)
|
||||
}(i)
|
||||
}
|
||||
|
||||
// Close the output channel when all workers are done
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(out)
|
||||
}()
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// worker processes jobs from the input channel and sends results to the output channel
|
||||
func (fm *FanManager) worker(ctx context.Context, jobs <-chan *types.Transaction, out chan<- *types.Transaction, workerID int) {
|
||||
for {
|
||||
select {
|
||||
case job, ok := <-jobs:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Process the job (in this case, just pass it through)
|
||||
// In practice, you would do some processing here
|
||||
fm.logger.Debug(fmt.Sprintf("Worker %d processing transaction %s", workerID, job.Hash().Hex()))
|
||||
|
||||
// Simulate some work
|
||||
time.Sleep(10 * time.Millisecond)
|
||||
|
||||
// Send the result to the output channel
|
||||
select {
|
||||
case out <- job:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FanIn combines multiple input channels into a single output channel
|
||||
func (fm *FanManager) FanIn(ctx context.Context, inputs ...<-chan *types.Transaction) <-chan *types.Transaction {
|
||||
// Create the output channel
|
||||
out := make(chan *types.Transaction, fm.bufferSize)
|
||||
|
||||
// Create a wait group to wait for all input channels
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Start a goroutine for each input channel
|
||||
for i, input := range inputs {
|
||||
wg.Add(1)
|
||||
go func(inputID int, inputChan <-chan *types.Transaction) {
|
||||
defer wg.Done()
|
||||
fm.fanInWorker(ctx, inputChan, out, inputID)
|
||||
}(i, input)
|
||||
}
|
||||
|
||||
// Close the output channel when all input channels are done
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(out)
|
||||
}()
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// fanInWorker reads from an input channel and writes to the output channel
|
||||
func (fm *FanManager) fanInWorker(ctx context.Context, input <-chan *types.Transaction, out chan<- *types.Transaction, inputID int) {
|
||||
for {
|
||||
select {
|
||||
case job, ok := <-input:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Send the job to the output channel
|
||||
select {
|
||||
case out <- job:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Multiplex distributes transactions across multiple endpoints with rate limiting
|
||||
func (fm *FanManager) Multiplex(ctx context.Context, transactions <-chan *types.Transaction) []<-chan *types.Transaction {
|
||||
endpoints := fm.rateLimiter.GetEndpoints()
|
||||
outputs := make([]<-chan *types.Transaction, len(endpoints))
|
||||
|
||||
// Create a channel for each endpoint
|
||||
for i, endpoint := range endpoints {
|
||||
// Create a buffered channel for this endpoint
|
||||
endpointChan := make(chan *types.Transaction, fm.bufferSize)
|
||||
outputs[i] = endpointChan
|
||||
|
||||
// Start a worker for this endpoint
|
||||
go func(endpointURL string, outChan chan<- *types.Transaction) {
|
||||
defer close(outChan)
|
||||
|
||||
for {
|
||||
select {
|
||||
case tx, ok := <-transactions:
|
||||
if !ok {
|
||||
return // Input channel closed
|
||||
}
|
||||
|
||||
// Wait for rate limiter
|
||||
if err := fm.rateLimiter.WaitForLimit(ctx, endpointURL); err != nil {
|
||||
fm.logger.Error(fmt.Sprintf("Rate limiter error for %s: %v", endpointURL, err))
|
||||
continue
|
||||
}
|
||||
|
||||
// Send to endpoint-specific channel
|
||||
select {
|
||||
case outChan <- tx:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}(endpoint, endpointChan)
|
||||
}
|
||||
|
||||
return outputs
|
||||
}
|
||||
201
pkg/market/manager.go
Normal file
201
pkg/market/manager.go
Normal file
@@ -0,0 +1,201 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/holiman/uint256"
|
||||
"golang.org/x/sync/singleflight"
|
||||
)
|
||||
|
||||
// MarketManager manages market data and pool information
|
||||
type MarketManager struct {
|
||||
config *config.UniswapConfig
|
||||
logger *logger.Logger
|
||||
pools map[string]*PoolData
|
||||
mu sync.RWMutex
|
||||
cacheGroup singleflight.Group
|
||||
cacheDuration time.Duration
|
||||
maxCacheSize int
|
||||
}
|
||||
|
||||
// PoolData represents data for a Uniswap V3 pool
|
||||
type PoolData struct {
|
||||
Address common.Address
|
||||
Token0 common.Address
|
||||
Token1 common.Address
|
||||
Fee int64
|
||||
Liquidity *uint256.Int
|
||||
SqrtPriceX96 *uint256.Int
|
||||
Tick int
|
||||
TickSpacing int
|
||||
LastUpdated time.Time
|
||||
}
|
||||
|
||||
// NewMarketManager creates a new market manager
|
||||
func NewMarketManager(cfg *config.UniswapConfig, logger *logger.Logger) *MarketManager {
|
||||
return &MarketManager{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
pools: make(map[string]*PoolData),
|
||||
cacheDuration: time.Duration(cfg.Cache.Expiration) * time.Second,
|
||||
maxCacheSize: cfg.Cache.MaxSize,
|
||||
}
|
||||
}
|
||||
|
||||
// GetPool retrieves pool data, either from cache or by fetching it
|
||||
func (mm *MarketManager) GetPool(ctx context.Context, poolAddress common.Address) (*PoolData, error) {
|
||||
// Check if we have it in cache and it's still valid
|
||||
poolKey := poolAddress.Hex()
|
||||
|
||||
mm.mu.RLock()
|
||||
if pool, exists := mm.pools[poolKey]; exists {
|
||||
// Check if cache is still valid
|
||||
if time.Since(pool.LastUpdated) < mm.cacheDuration {
|
||||
mm.mu.RUnlock()
|
||||
return pool, nil
|
||||
}
|
||||
}
|
||||
mm.mu.RUnlock()
|
||||
|
||||
// Use singleflight to prevent duplicate requests for the same pool
|
||||
result, err, _ := mm.cacheGroup.Do(poolKey, func() (interface{}, error) {
|
||||
return mm.fetchPoolData(ctx, poolAddress)
|
||||
})
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pool := result.(*PoolData)
|
||||
|
||||
// Update cache
|
||||
mm.mu.Lock()
|
||||
// Check if we need to evict old entries
|
||||
if len(mm.pools) >= mm.maxCacheSize {
|
||||
mm.evictOldest()
|
||||
}
|
||||
mm.pools[poolKey] = pool
|
||||
mm.mu.Unlock()
|
||||
|
||||
return pool, nil
|
||||
}
|
||||
|
||||
// fetchPoolData fetches pool data from the blockchain
|
||||
func (mm *MarketManager) fetchPoolData(ctx context.Context, poolAddress common.Address) (*PoolData, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would interact with the Ethereum blockchain to get real data
|
||||
|
||||
// For now, we'll return mock data
|
||||
pool := &PoolData{
|
||||
Address: poolAddress,
|
||||
Token0: common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"), // USDC
|
||||
Token1: common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"), // WETH
|
||||
Fee: 3000, // 0.3%
|
||||
Liquidity: uint256.NewInt(1000000000000000000), // 1 ETH equivalent
|
||||
SqrtPriceX96: uint256.NewInt(2505414483750470000), // Mock sqrt price
|
||||
Tick: 200000, // Mock tick
|
||||
TickSpacing: 60, // Tick spacing for 0.3% fee
|
||||
LastUpdated: time.Now(),
|
||||
}
|
||||
|
||||
mm.logger.Debug(fmt.Sprintf("Fetched pool data for %s", poolAddress.Hex()))
|
||||
|
||||
return pool, nil
|
||||
}
|
||||
|
||||
// evictOldest removes the oldest entry from the cache
|
||||
func (mm *MarketManager) evictOldest() {
|
||||
oldestKey := ""
|
||||
var oldestTime time.Time
|
||||
|
||||
for key, pool := range mm.pools {
|
||||
if oldestKey == "" || pool.LastUpdated.Before(oldestTime) {
|
||||
oldestKey = key
|
||||
oldestTime = pool.LastUpdated
|
||||
}
|
||||
}
|
||||
|
||||
if oldestKey != "" {
|
||||
delete(mm.pools, oldestKey)
|
||||
mm.logger.Debug(fmt.Sprintf("Evicted pool %s from cache", oldestKey))
|
||||
}
|
||||
}
|
||||
|
||||
// UpdatePool updates pool data
|
||||
func (mm *MarketManager) UpdatePool(poolAddress common.Address, liquidity *uint256.Int, sqrtPriceX96 *uint256.Int, tick int) {
|
||||
poolKey := poolAddress.Hex()
|
||||
|
||||
mm.mu.Lock()
|
||||
defer mm.mu.Unlock()
|
||||
|
||||
if pool, exists := mm.pools[poolKey]; exists {
|
||||
pool.Liquidity = liquidity
|
||||
pool.SqrtPriceX96 = sqrtPriceX96
|
||||
pool.Tick = tick
|
||||
pool.LastUpdated = time.Now()
|
||||
} else {
|
||||
// Create new pool entry
|
||||
pool := &PoolData{
|
||||
Address: poolAddress,
|
||||
Liquidity: liquidity,
|
||||
SqrtPriceX96: sqrtPriceX96,
|
||||
Tick: tick,
|
||||
LastUpdated: time.Now(),
|
||||
}
|
||||
mm.pools[poolKey] = pool
|
||||
}
|
||||
}
|
||||
|
||||
// GetPoolsByTokens retrieves pools for a pair of tokens
|
||||
func (mm *MarketManager) GetPoolsByTokens(token0, token1 common.Address) []*PoolData {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
pools := make([]*PoolData, 0)
|
||||
|
||||
for _, pool := range mm.pools {
|
||||
// Check if this pool contains the token pair
|
||||
if (pool.Token0 == token0 && pool.Token1 == token1) ||
|
||||
(pool.Token0 == token1 && pool.Token1 == token0) {
|
||||
pools = append(pools, pool)
|
||||
}
|
||||
}
|
||||
|
||||
return pools
|
||||
}
|
||||
|
||||
// GetAllPools returns all cached pools
|
||||
func (mm *MarketManager) GetAllPools() []*PoolData {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
pools := make([]*PoolData, 0, len(mm.pools))
|
||||
for _, pool := range mm.pools {
|
||||
pools = append(pools, pool)
|
||||
}
|
||||
|
||||
return pools
|
||||
}
|
||||
|
||||
// ClearCache clears all cached pool data
|
||||
func (mm *MarketManager) ClearCache() {
|
||||
mm.mu.Lock()
|
||||
defer mm.mu.Unlock()
|
||||
|
||||
mm.pools = make(map[string]*PoolData)
|
||||
mm.logger.Info("Cleared pool cache")
|
||||
}
|
||||
|
||||
// GetCacheStats returns cache statistics
|
||||
func (mm *MarketManager) GetCacheStats() (int, int) {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
return len(mm.pools), mm.maxCacheSize
|
||||
}
|
||||
249
pkg/market/pipeline.go
Normal file
249
pkg/market/pipeline.go
Normal file
@@ -0,0 +1,249 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/pkg/scanner"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
// Pipeline processes transactions through multiple stages
|
||||
type Pipeline struct {
|
||||
config *config.BotConfig
|
||||
logger *logger.Logger
|
||||
marketMgr *MarketManager
|
||||
scanner *scanner.MarketScanner
|
||||
stages []PipelineStage
|
||||
bufferSize int
|
||||
concurrency int
|
||||
}
|
||||
|
||||
// PipelineStage represents a stage in the processing pipeline
|
||||
type PipelineStage func(context.Context, <-chan *types.Transaction, chan<- *scanner.SwapDetails) error
|
||||
|
||||
// NewPipeline creates a new transaction processing pipeline
|
||||
func NewPipeline(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
scanner *scanner.MarketScanner,
|
||||
) *Pipeline {
|
||||
return &Pipeline{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
marketMgr: marketMgr,
|
||||
scanner: scanner,
|
||||
bufferSize: cfg.ChannelBufferSize,
|
||||
concurrency: cfg.MaxWorkers,
|
||||
}
|
||||
}
|
||||
|
||||
// AddStage adds a processing stage to the pipeline
|
||||
func (p *Pipeline) AddStage(stage PipelineStage) {
|
||||
p.stages = append(p.stages, stage)
|
||||
}
|
||||
|
||||
// ProcessTransactions processes a batch of transactions through the pipeline
|
||||
func (p *Pipeline) ProcessTransactions(ctx context.Context, transactions []*types.Transaction) error {
|
||||
if len(p.stages) == 0 {
|
||||
return fmt.Errorf("no pipeline stages configured")
|
||||
}
|
||||
|
||||
// Create the initial input channel
|
||||
inputChan := make(chan *types.Transaction, p.bufferSize)
|
||||
|
||||
// Send transactions to the input channel
|
||||
go func() {
|
||||
defer close(inputChan)
|
||||
for _, tx := range transactions {
|
||||
select {
|
||||
case inputChan <- tx:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
// Process through each stage
|
||||
var currentChan <-chan *scanner.SwapDetails = nil
|
||||
|
||||
for i, stage := range p.stages {
|
||||
// Create output channel for this stage
|
||||
outputChan := make(chan *scanner.SwapDetails, p.bufferSize)
|
||||
|
||||
// For the first stage, we need to convert transactions to swap details
|
||||
if i == 0 {
|
||||
// Special handling for first stage
|
||||
go func(stage PipelineStage, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) {
|
||||
defer close(output)
|
||||
err := stage(ctx, input, output)
|
||||
if err != nil {
|
||||
p.logger.Error(fmt.Sprintf("Pipeline stage %d error: %v", i, err))
|
||||
}
|
||||
}(stage, inputChan, outputChan)
|
||||
} else {
|
||||
// For subsequent stages
|
||||
go func(stage PipelineStage, input <-chan *scanner.SwapDetails, output chan<- *scanner.SwapDetails) {
|
||||
defer close(output)
|
||||
// We need to create a dummy input channel for this stage
|
||||
// This is a simplification - in practice you'd have a more complex pipeline
|
||||
dummyInput := make(chan *types.Transaction, p.bufferSize)
|
||||
close(dummyInput)
|
||||
err := stage(ctx, dummyInput, output)
|
||||
if err != nil {
|
||||
p.logger.Error(fmt.Sprintf("Pipeline stage %d error: %v", i, err))
|
||||
}
|
||||
}(stage, currentChan, outputChan)
|
||||
}
|
||||
|
||||
currentChan = outputChan
|
||||
}
|
||||
|
||||
// Process the final output
|
||||
if currentChan != nil {
|
||||
go p.processSwapDetails(ctx, currentChan)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// processSwapDetails processes the final output of the pipeline
|
||||
func (p *Pipeline) processSwapDetails(ctx context.Context, swapDetails <-chan *scanner.SwapDetails) {
|
||||
for {
|
||||
select {
|
||||
case swap, ok := <-swapDetails:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Submit to the market scanner for processing
|
||||
p.scanner.SubmitSwap(*swap)
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TransactionDecoderStage decodes transactions to identify swap opportunities
|
||||
func TransactionDecoderStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Process transactions concurrently
|
||||
for i := 0; i < cfg.MaxWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
for {
|
||||
select {
|
||||
case tx, ok := <-input:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Process the transaction
|
||||
swapDetails := decodeTransaction(tx, logger)
|
||||
if swapDetails != nil {
|
||||
select {
|
||||
case output <- swapDetails:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Wait for all workers to finish
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(output)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// decodeTransaction decodes a transaction to extract swap details
|
||||
func decodeTransaction(tx *types.Transaction, logger *logger.Logger) *scanner.SwapDetails {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would:
|
||||
// 1. Check if the transaction is calling a Uniswap-like contract
|
||||
// 2. Decode the function call data
|
||||
// 3. Extract token addresses, amounts, etc.
|
||||
|
||||
// For now, we'll return mock data for demonstration
|
||||
if tx.To() != nil {
|
||||
swap := &scanner.SwapDetails{
|
||||
PoolAddress: tx.To().Hex(),
|
||||
Token0: "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", // USDC
|
||||
Token1: "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2", // WETH
|
||||
Amount0In: big.NewInt(1000000000), // 1000 USDC
|
||||
Amount0Out: big.NewInt(0),
|
||||
Amount1In: big.NewInt(0),
|
||||
Amount1Out: big.NewInt(500000000000000000), // 0.5 WETH
|
||||
SqrtPriceX96: uint256.NewInt(2505414483750470000),
|
||||
Liquidity: uint256.NewInt(1000000000000000000),
|
||||
Tick: 200000,
|
||||
Timestamp: time.Now(),
|
||||
TransactionHash: tx.Hash(),
|
||||
}
|
||||
|
||||
logger.Debug(fmt.Sprintf("Decoded swap transaction: %s", tx.Hash().Hex()))
|
||||
return swap
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarketAnalysisStage performs market analysis on swap details
|
||||
func MarketAnalysisStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
// This is a placeholder for market analysis
|
||||
// In practice, you would:
|
||||
// 1. Get pool data from market manager
|
||||
// 2. Analyze price impact
|
||||
// 3. Check for arbitrage opportunities
|
||||
|
||||
close(output)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// ArbitrageDetectionStage detects arbitrage opportunities
|
||||
func ArbitrageDetectionStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
// This is a placeholder for arbitrage detection
|
||||
// In practice, you would:
|
||||
// 1. Compare prices across multiple pools
|
||||
// 2. Calculate potential profit
|
||||
// 3. Filter based on profitability
|
||||
|
||||
close(output)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
@@ -3,74 +3,147 @@ package monitor
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
"math/big"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/internal/ratelimit"
|
||||
"github.com/your-username/mev-beta/pkg/market"
|
||||
"github.com/your-username/mev-beta/pkg/scanner"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/ethereum/go-ethereum/ethclient"
|
||||
"golang.org/x/time/rate"
|
||||
)
|
||||
|
||||
// ArbitrumMonitor monitors the Arbitrum sequencer for transactions
|
||||
// ArbitrumMonitor monitors the Arbitrum sequencer for transactions with concurrency support
|
||||
type ArbitrumMonitor struct {
|
||||
config *config.ArbitrumConfig
|
||||
botConfig *config.BotConfig
|
||||
client *ethclient.Client
|
||||
rpcEndpoint string
|
||||
logger *logger.Logger
|
||||
rateLimiter *ratelimit.LimiterManager
|
||||
marketMgr *market.MarketManager
|
||||
scanner *scanner.MarketScanner
|
||||
pipeline *market.Pipeline
|
||||
fanManager *market.FanManager
|
||||
limiter *rate.Limiter
|
||||
pollInterval time.Duration
|
||||
running bool
|
||||
mu sync.RWMutex
|
||||
}
|
||||
|
||||
// NewArbitrumMonitor creates a new Arbitrum monitor
|
||||
func NewArbitrumMonitor(rpcEndpoint string, pollInterval time.Duration) (*ArbitrumMonitor, error) {
|
||||
client, err := ethclient.Dial(rpcEndpoint)
|
||||
// NewArbitrumMonitor creates a new Arbitrum monitor with rate limiting
|
||||
func NewArbitrumMonitor(
|
||||
arbCfg *config.ArbitrumConfig,
|
||||
botCfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
rateLimiter *ratelimit.LimiterManager,
|
||||
marketMgr *market.MarketManager,
|
||||
scanner *scanner.MarketScanner,
|
||||
) (*ArbitrumMonitor, error) {
|
||||
// Create Ethereum client
|
||||
client, err := ethclient.Dial(arbCfg.RPCEndpoint)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to connect to Arbitrum node: %v", err)
|
||||
}
|
||||
|
||||
// Create rate limiter based on config
|
||||
limiter := rate.NewLimiter(
|
||||
rate.Limit(arbCfg.RateLimit.RequestsPerSecond),
|
||||
arbCfg.RateLimit.Burst,
|
||||
)
|
||||
|
||||
// Create pipeline
|
||||
pipeline := market.NewPipeline(botCfg, logger, marketMgr, scanner)
|
||||
|
||||
// Add stages to pipeline
|
||||
pipeline.AddStage(market.TransactionDecoderStage(botCfg, logger, marketMgr))
|
||||
|
||||
// Create fan manager
|
||||
fanManager := market.NewFanManager(
|
||||
&config.Config{
|
||||
Arbitrum: *arbCfg,
|
||||
Bot: *botCfg,
|
||||
},
|
||||
logger,
|
||||
rateLimiter,
|
||||
)
|
||||
|
||||
return &ArbitrumMonitor{
|
||||
config: arbCfg,
|
||||
botConfig: botCfg,
|
||||
client: client,
|
||||
rpcEndpoint: rpcEndpoint,
|
||||
pollInterval: pollInterval,
|
||||
logger: logger,
|
||||
rateLimiter: rateLimiter,
|
||||
marketMgr: marketMgr,
|
||||
scanner: scanner,
|
||||
pipeline: pipeline,
|
||||
fanManager: fanManager,
|
||||
limiter: limiter,
|
||||
pollInterval: time.Duration(botCfg.PollingInterval) * time.Second,
|
||||
running: false,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Start begins monitoring the Arbitrum sequencer
|
||||
func (m *ArbitrumMonitor) Start(ctx context.Context) error {
|
||||
log.Println("Starting Arbitrum sequencer monitoring...")
|
||||
m.mu.Lock()
|
||||
m.running = true
|
||||
m.mu.Unlock()
|
||||
|
||||
m.logger.Info("Starting Arbitrum sequencer monitoring...")
|
||||
|
||||
// Get the latest block to start from
|
||||
if err := m.rateLimiter.WaitForLimit(ctx, m.config.RPCEndpoint); err != nil {
|
||||
return fmt.Errorf("rate limit error: %v", err)
|
||||
}
|
||||
|
||||
header, err := m.client.HeaderByNumber(ctx, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get latest block header: %v", err)
|
||||
}
|
||||
|
||||
lastBlock := header.Number.Uint64()
|
||||
log.Printf("Starting from block: %d", lastBlock)
|
||||
m.logger.Info(fmt.Sprintf("Starting from block: %d", lastBlock))
|
||||
|
||||
for {
|
||||
m.mu.RLock()
|
||||
running := m.running
|
||||
m.mu.RUnlock()
|
||||
|
||||
if !running {
|
||||
break
|
||||
}
|
||||
|
||||
for m.running {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
m.running = false
|
||||
m.Stop()
|
||||
return nil
|
||||
case <-time.After(m.pollInterval):
|
||||
// Get the latest block
|
||||
if err := m.rateLimiter.WaitForLimit(ctx, m.config.RPCEndpoint); err != nil {
|
||||
m.logger.Error(fmt.Sprintf("Rate limit error: %v", err))
|
||||
continue
|
||||
}
|
||||
|
||||
header, err := m.client.HeaderByNumber(ctx, nil)
|
||||
if err != nil {
|
||||
log.Printf("Failed to get latest block header: %v", err)
|
||||
m.logger.Error(fmt.Sprintf("Failed to get latest block header: %v", err))
|
||||
continue
|
||||
}
|
||||
|
||||
currentBlock := header.Number.Uint64()
|
||||
|
||||
|
||||
// Process blocks from lastBlock+1 to currentBlock
|
||||
for blockNum := lastBlock + 1; blockNum <= currentBlock; blockNum++ {
|
||||
if err := m.processBlock(ctx, blockNum); err != nil {
|
||||
log.Printf("Failed to process block %d: %v", blockNum, err)
|
||||
m.logger.Error(fmt.Sprintf("Failed to process block %d: %v", blockNum, err))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
lastBlock = currentBlock
|
||||
}
|
||||
}
|
||||
@@ -80,24 +153,33 @@ func (m *ArbitrumMonitor) Start(ctx context.Context) error {
|
||||
|
||||
// Stop stops the monitor
|
||||
func (m *ArbitrumMonitor) Stop() {
|
||||
m.mu.Lock()
|
||||
defer m.mu.Unlock()
|
||||
m.running = false
|
||||
m.logger.Info("Stopping Arbitrum monitor...")
|
||||
}
|
||||
|
||||
// processBlock processes a single block for potential swap transactions
|
||||
func (m *ArbitrumMonitor) processBlock(ctx context.Context, blockNumber uint64) error {
|
||||
log.Printf("Processing block %d", blockNumber)
|
||||
|
||||
m.logger.Debug(fmt.Sprintf("Processing block %d", blockNumber))
|
||||
|
||||
// Wait for rate limiter
|
||||
if err := m.rateLimiter.WaitForLimit(ctx, m.config.RPCEndpoint); err != nil {
|
||||
return fmt.Errorf("rate limit error: %v", err)
|
||||
}
|
||||
|
||||
// Get block by number
|
||||
block, err := m.client.BlockByNumber(ctx, big.NewInt(int64(blockNumber)))
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get block %d: %v", blockNumber, err)
|
||||
}
|
||||
|
||||
// Process each transaction in the block
|
||||
for _, tx := range block.Transactions() {
|
||||
if err := m.processTransaction(ctx, tx); err != nil {
|
||||
log.Printf("Failed to process transaction %s: %v", tx.Hash().Hex(), err)
|
||||
}
|
||||
// Process transactions using pipeline
|
||||
transactions := block.Transactions()
|
||||
|
||||
// Process transactions through the pipeline
|
||||
if err := m.pipeline.ProcessTransactions(ctx, transactions); err != nil {
|
||||
m.logger.Error(fmt.Sprintf("Pipeline processing error: %v", err))
|
||||
}
|
||||
|
||||
return nil
|
||||
@@ -108,17 +190,17 @@ func (m *ArbitrumMonitor) processTransaction(ctx context.Context, tx *types.Tran
|
||||
// Check if this is a potential swap transaction
|
||||
// This is a simplified check - in practice, you would check for
|
||||
// specific function signatures of Uniswap-like contracts
|
||||
|
||||
|
||||
// For now, we'll just log all transactions
|
||||
from, err := m.client.TransactionSender(ctx, tx, common.Hash{}, 0)
|
||||
if err != nil {
|
||||
// This can happen for pending transactions
|
||||
from = common.HexToAddress("0x0")
|
||||
}
|
||||
|
||||
log.Printf("Transaction: %s, From: %s, To: %s, Value: %s ETH",
|
||||
tx.Hash().Hex(),
|
||||
from.Hex(),
|
||||
|
||||
m.logger.Debug(fmt.Sprintf("Transaction: %s, From: %s, To: %s, Value: %s ETH",
|
||||
tx.Hash().Hex(),
|
||||
from.Hex(),
|
||||
func() string {
|
||||
if tx.To() != nil {
|
||||
return tx.To().Hex()
|
||||
@@ -126,15 +208,15 @@ func (m *ArbitrumMonitor) processTransaction(ctx context.Context, tx *types.Tran
|
||||
return "contract creation"
|
||||
}(),
|
||||
new(big.Float).Quo(new(big.Float).SetInt(tx.Value()), big.NewFloat(1e18)).String(),
|
||||
)
|
||||
|
||||
))
|
||||
|
||||
// TODO: Add logic to detect swap transactions and analyze them
|
||||
// This would involve:
|
||||
// 1. Checking if the transaction is calling a Uniswap-like contract
|
||||
// 2. Decoding the swap function call
|
||||
// 3. Extracting the token addresses and amounts
|
||||
// 4. Calculating potential price impact
|
||||
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -142,12 +224,12 @@ func (m *ArbitrumMonitor) processTransaction(ctx context.Context, tx *types.Tran
|
||||
func (m *ArbitrumMonitor) GetPendingTransactions(ctx context.Context) ([]*types.Transaction, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you might need to use a different approach to access pending transactions
|
||||
|
||||
|
||||
// Query for pending transactions
|
||||
txs := make([]*types.Transaction, 0)
|
||||
|
||||
|
||||
// Note: ethclient doesn't directly expose pending transactions
|
||||
// You might need to use a different approach or a custom RPC call
|
||||
|
||||
|
||||
return txs, nil
|
||||
}
|
||||
246
pkg/scanner/concurrent.go
Normal file
246
pkg/scanner/concurrent.go
Normal file
@@ -0,0 +1,246 @@
|
||||
package scanner
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/big"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/pkg/uniswap"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
// MarketScanner scans markets for price movement opportunities with concurrency
|
||||
type MarketScanner struct {
|
||||
config *config.BotConfig
|
||||
logger *logger.Logger
|
||||
workerPool chan chan SwapDetails
|
||||
workers []*SwapWorker
|
||||
wg sync.WaitGroup
|
||||
}
|
||||
|
||||
// SwapWorker represents a worker that processes swap details
|
||||
type SwapWorker struct {
|
||||
ID int
|
||||
WorkerPool chan chan SwapDetails
|
||||
JobChannel chan SwapDetails
|
||||
QuitChan chan bool
|
||||
scanner *MarketScanner
|
||||
}
|
||||
|
||||
// NewMarketScanner creates a new market scanner with concurrency support
|
||||
func NewMarketScanner(cfg *config.BotConfig, logger *logger.Logger) *MarketScanner {
|
||||
scanner := &MarketScanner{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
workerPool: make(chan chan SwapDetails, cfg.MaxWorkers),
|
||||
workers: make([]*SwapWorker, 0, cfg.MaxWorkers),
|
||||
}
|
||||
|
||||
// Create workers
|
||||
for i := 0; i < cfg.MaxWorkers; i++ {
|
||||
worker := NewSwapWorker(i, scanner.workerPool, scanner)
|
||||
scanner.workers = append(scanner.workers, worker)
|
||||
worker.Start()
|
||||
}
|
||||
|
||||
return scanner
|
||||
}
|
||||
|
||||
// NewSwapWorker creates a new swap worker
|
||||
func NewSwapWorker(id int, workerPool chan chan SwapDetails, scanner *MarketScanner) *SwapWorker {
|
||||
return &SwapWorker{
|
||||
ID: id,
|
||||
WorkerPool: workerPool,
|
||||
JobChannel: make(chan SwapDetails),
|
||||
QuitChan: make(chan bool),
|
||||
scanner: scanner,
|
||||
}
|
||||
}
|
||||
|
||||
// Start begins the worker
|
||||
func (w *SwapWorker) Start() {
|
||||
go func() {
|
||||
for {
|
||||
// Register the worker in the worker pool
|
||||
w.WorkerPool <- w.JobChannel
|
||||
|
||||
select {
|
||||
case job := <-w.JobChannel:
|
||||
// Process the job
|
||||
w.Process(job)
|
||||
case <-w.QuitChan:
|
||||
// Stop the worker
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Stop terminates the worker
|
||||
func (w *SwapWorker) Stop() {
|
||||
go func() {
|
||||
w.QuitChan <- true
|
||||
}()
|
||||
}
|
||||
|
||||
// Process handles a swap detail
|
||||
func (w *SwapWorker) Process(swap SwapDetails) {
|
||||
// Analyze the swap in a separate goroutine to maintain throughput
|
||||
go func() {
|
||||
defer w.scanner.wg.Done()
|
||||
|
||||
// Log the processing
|
||||
w.scanner.logger.Debug(fmt.Sprintf("Worker %d processing swap in pool %s", w.ID, swap.PoolAddress))
|
||||
|
||||
// Analyze the swap
|
||||
priceMovement, err := w.scanner.AnalyzeSwap(swap)
|
||||
if err != nil {
|
||||
w.scanner.logger.Error(fmt.Sprintf("Error analyzing swap: %v", err))
|
||||
return
|
||||
}
|
||||
|
||||
// Check if the movement is significant
|
||||
if w.scanner.IsSignificantMovement(priceMovement, w.scanner.config.MinProfitThreshold) {
|
||||
w.scanner.logger.Info(fmt.Sprintf("Significant price movement detected: %+v", priceMovement))
|
||||
// TODO: Send to arbitrage engine
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// SubmitSwap submits a swap for processing by the worker pool
|
||||
func (s *MarketScanner) SubmitSwap(swap SwapDetails) {
|
||||
s.wg.Add(1)
|
||||
|
||||
// Get an available worker job channel
|
||||
jobChannel := <-s.workerPool
|
||||
|
||||
// Send the job to the worker
|
||||
jobChannel <- swap
|
||||
}
|
||||
|
||||
// AnalyzeSwap analyzes a swap to determine if it's large enough to move the price
|
||||
func (s *MarketScanner) AnalyzeSwap(swap SwapDetails) (*PriceMovement, error) {
|
||||
// Calculate the price before the swap
|
||||
priceBefore := uniswap.SqrtPriceX96ToPrice(swap.SqrtPriceX96.ToBig())
|
||||
|
||||
// For a more accurate calculation, we would need to:
|
||||
// 1. Calculate the new sqrtPriceX96 after the swap
|
||||
// 2. Convert that to a price
|
||||
// 3. Calculate the price impact
|
||||
|
||||
priceMovement := &PriceMovement{
|
||||
Token0: swap.Token0,
|
||||
Token1: swap.Token1,
|
||||
Pool: swap.PoolAddress,
|
||||
AmountIn: new(big.Int).Add(swap.Amount0In, swap.Amount1In),
|
||||
AmountOut: new(big.Int).Add(swap.Amount0Out, swap.Amount1Out),
|
||||
PriceBefore: priceBefore,
|
||||
TickBefore: swap.Tick,
|
||||
// TickAfter would be calculated based on the swap size and liquidity
|
||||
}
|
||||
|
||||
// Calculate price impact (simplified)
|
||||
// In practice, this would involve more complex calculations using Uniswap V3 math
|
||||
if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 {
|
||||
impact := new(big.Float).Quo(
|
||||
new(big.Float).SetInt(priceMovement.AmountOut),
|
||||
new(big.Float).SetInt(priceMovement.AmountIn),
|
||||
)
|
||||
priceImpact, _ := impact.Float64()
|
||||
priceMovement.PriceImpact = priceImpact
|
||||
}
|
||||
|
||||
return priceMovement, nil
|
||||
}
|
||||
|
||||
// IsSignificantMovement determines if a price movement is significant enough to exploit
|
||||
func (s *MarketScanner) IsSignificantMovement(movement *PriceMovement, threshold float64) bool {
|
||||
// Check if the price impact is above our threshold
|
||||
return movement.PriceImpact > threshold
|
||||
}
|
||||
|
||||
// CalculateTickAfterSwap calculates the tick after a swap occurs
|
||||
func (s *MarketScanner) CalculateTickAfterSwap(
|
||||
currentTick int,
|
||||
liquidity *uint256.Int,
|
||||
amountIn *big.Int,
|
||||
zeroForOne bool, // true if swapping token0 for token1
|
||||
) int {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would need to use the Uniswap V3 math formulas
|
||||
|
||||
// The actual calculation would involve:
|
||||
// 1. Converting amounts to sqrt prices
|
||||
// 2. Using the liquidity to determine the price movement
|
||||
// 3. Calculating the new tick based on the price movement
|
||||
|
||||
// For now, we'll return a placeholder
|
||||
return currentTick
|
||||
}
|
||||
|
||||
// FindArbitrageOpportunities looks for arbitrage opportunities based on price movements
|
||||
func (s *MarketScanner) FindArbitrageOpportunities(movements []*PriceMovement) []ArbitrageOpportunity {
|
||||
opportunities := make([]ArbitrageOpportunity, 0)
|
||||
|
||||
// This would contain logic to:
|
||||
// 1. Compare prices across different pools
|
||||
// 2. Calculate potential profit after gas costs
|
||||
// 3. Identify triangular arbitrage opportunities
|
||||
// 4. Check if the opportunity is profitable
|
||||
|
||||
return opportunities
|
||||
}
|
||||
|
||||
// Stop stops the market scanner and all workers
|
||||
func (s *MarketScanner) Stop() {
|
||||
// Stop all workers
|
||||
for _, worker := range s.workers {
|
||||
worker.Stop()
|
||||
}
|
||||
|
||||
// Wait for all jobs to complete
|
||||
s.wg.Wait()
|
||||
}
|
||||
|
||||
// ArbitrageOpportunity represents a potential arbitrage opportunity
|
||||
type ArbitrageOpportunity struct {
|
||||
Path []string // Token path for the arbitrage
|
||||
Pools []string // Pools involved in the arbitrage
|
||||
Profit *big.Int // Estimated profit in wei
|
||||
GasEstimate *big.Int // Estimated gas cost
|
||||
ROI float64 // Return on investment percentage
|
||||
}
|
||||
|
||||
// PriceMovement represents a potential price movement
|
||||
type PriceMovement struct {
|
||||
Token0 string // Token address
|
||||
Token1 string // Token address
|
||||
Pool string // Pool address
|
||||
AmountIn *big.Int // Amount of token being swapped in
|
||||
AmountOut *big.Int // Amount of token being swapped out
|
||||
PriceBefore *big.Float // Price before the swap
|
||||
PriceAfter *big.Float // Price after the swap (to be calculated)
|
||||
PriceImpact float64 // Calculated price impact
|
||||
TickBefore int // Tick before the swap
|
||||
TickAfter int // Tick after the swap (to be calculated)
|
||||
}
|
||||
|
||||
// SwapDetails contains details about a detected swap
|
||||
type SwapDetails struct {
|
||||
PoolAddress string
|
||||
Token0 string
|
||||
Token1 string
|
||||
Amount0In *big.Int
|
||||
Amount0Out *big.Int
|
||||
Amount1In *big.Int
|
||||
Amount1Out *big.Int
|
||||
SqrtPriceX96 *uint256.Int
|
||||
Liquidity *uint256.Int
|
||||
Tick int
|
||||
Timestamp time.Time
|
||||
TransactionHash common.Hash
|
||||
}
|
||||
@@ -1,122 +1,2 @@
|
||||
package scanner
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
// MarketScanner scans markets for price movement opportunities
|
||||
type MarketScanner struct {
|
||||
// Configuration fields would go here
|
||||
}
|
||||
|
||||
// NewMarketScanner creates a new market scanner
|
||||
func NewMarketScanner() *MarketScanner {
|
||||
return &MarketScanner{}
|
||||
}
|
||||
|
||||
// PriceMovement represents a potential price movement
|
||||
type PriceMovement struct {
|
||||
Token0 string // Token address
|
||||
Token1 string // Token address
|
||||
Pool string // Pool address
|
||||
AmountIn *big.Int // Amount of token being swapped in
|
||||
AmountOut *big.Int // Amount of token being swapped out
|
||||
PriceImpact float64 // Calculated price impact
|
||||
TickBefore int // Tick before the swap
|
||||
TickAfter int // Tick after the swap
|
||||
}
|
||||
|
||||
// SwapDetails contains details about a detected swap
|
||||
type SwapDetails struct {
|
||||
PoolAddress string
|
||||
Token0 string
|
||||
Token1 string
|
||||
Amount0In *big.Int
|
||||
Amount0Out *big.Int
|
||||
Amount1In *big.Int
|
||||
Amount1Out *big.Int
|
||||
SqrtPriceX96 *uint256.Int
|
||||
Liquidity *uint256.Int
|
||||
Tick int
|
||||
}
|
||||
|
||||
// AnalyzeSwap analyzes a swap to determine if it's large enough to move the price
|
||||
func (s *MarketScanner) AnalyzeSwap(swap SwapDetails) (*PriceMovement, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would need to:
|
||||
// 1. Calculate the price before the swap
|
||||
// 2. Calculate the price after the swap
|
||||
// 3. Determine the price impact
|
||||
|
||||
priceMovement := &PriceMovement{
|
||||
Token0: swap.Token0,
|
||||
Token1: swap.Token1,
|
||||
Pool: swap.PoolAddress,
|
||||
AmountIn: new(big.Int).Add(swap.Amount0In, swap.Amount1In),
|
||||
AmountOut: new(big.Int).Add(swap.Amount0Out, swap.Amount1Out),
|
||||
TickBefore: swap.Tick,
|
||||
// TickAfter would be calculated based on the swap size and liquidity
|
||||
}
|
||||
|
||||
// Calculate price impact (simplified)
|
||||
// In practice, this would involve more complex calculations
|
||||
if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 {
|
||||
impact := new(big.Float).Quo(
|
||||
new(big.Float).SetInt(priceMovement.AmountOut),
|
||||
new(big.Float).SetInt(priceMovement.AmountIn),
|
||||
)
|
||||
priceImpact, _ := impact.Float64()
|
||||
priceMovement.PriceImpact = priceImpact
|
||||
}
|
||||
|
||||
return priceMovement, nil
|
||||
}
|
||||
|
||||
// IsSignificantMovement determines if a price movement is significant enough to exploit
|
||||
func (s *MarketScanner) IsSignificantMovement(movement *PriceMovement, threshold float64) bool {
|
||||
// Check if the price impact is above our threshold
|
||||
return movement.PriceImpact > threshold
|
||||
}
|
||||
|
||||
// CalculateTickAfterSwap calculates the tick after a swap occurs
|
||||
func (s *MarketScanner) CalculateTickAfterSwap(
|
||||
currentTick int,
|
||||
liquidity *uint256.Int,
|
||||
amountIn *big.Int,
|
||||
zeroForOne bool, // true if swapping token0 for token1
|
||||
) int {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would need to use the Uniswap V3 math formulas
|
||||
|
||||
// The actual calculation would involve:
|
||||
// 1. Converting amounts to sqrt prices
|
||||
// 2. Using the liquidity to determine the price movement
|
||||
// 3. Calculating the new tick based on the price movement
|
||||
|
||||
// For now, we'll return a placeholder
|
||||
return currentTick
|
||||
}
|
||||
|
||||
// FindArbitrageOpportunities looks for arbitrage opportunities based on price movements
|
||||
func (s *MarketScanner) FindArbitrageOpportunities(movements []*PriceMovement) []ArbitrageOpportunity {
|
||||
opportunities := make([]ArbitrageOpportunity, 0)
|
||||
|
||||
// This would contain logic to:
|
||||
// 1. Compare prices across different pools
|
||||
// 2. Calculate potential profit after gas costs
|
||||
// 3. Identify triangular arbitrage opportunities
|
||||
// 4. Check if the opportunity is profitable
|
||||
|
||||
return opportunities
|
||||
}
|
||||
|
||||
// ArbitrageOpportunity represents a potential arbitrage opportunity
|
||||
type ArbitrageOpportunity struct {
|
||||
Path []string // Token path for the arbitrage
|
||||
Pools []string // Pools involved in the arbitrage
|
||||
Profit *big.Int // Estimated profit in wei
|
||||
GasEstimate *big.Int // Estimated gas cost
|
||||
ROI float64 // Return on investment percentage
|
||||
}
|
||||
// Deprecated: Use concurrent.go instead
|
||||
package scanner
|
||||
@@ -1,6 +1,7 @@
|
||||
package uniswap
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/big"
|
||||
|
||||
"github.com/holiman/uint256"
|
||||
@@ -8,7 +9,7 @@ import (
|
||||
|
||||
const (
|
||||
// Q96 represents 2^96 used in Uniswap V3 sqrtPriceX96 calculations
|
||||
Q96 = 79228162514264337593543950336 // 2^96
|
||||
Q96 = "79228162514264337593543950336" // 2^96 as string to avoid overflow
|
||||
|
||||
// Tick spacing for different fee tiers
|
||||
LowTickSpacing = 10
|
||||
@@ -58,17 +59,22 @@ func TickToSqrtPriceX96(tick int) *big.Int {
|
||||
// sqrtPriceX96 = 1.0001^(tick/2) * 2^96
|
||||
|
||||
// Calculate 1.0001^(tick/2)
|
||||
base := new(big.Float).SetFloat64(1.0001)
|
||||
tickF := new(big.Float).SetFloat64(float64(tick) / 2.0)
|
||||
power := new(big.Float).Pow(base, tickF)
|
||||
base := 1.0001
|
||||
power := float64(tick) / 2.0
|
||||
result := math.Pow(base, power)
|
||||
|
||||
// Convert to big.Float
|
||||
price := new(big.Float).SetFloat64(result)
|
||||
|
||||
// Multiply by 2^96
|
||||
q96 := new(big.Float).SetInt(new(big.Int).Exp(big.NewInt(2), big.NewInt(96), nil))
|
||||
sqrtPrice := new(big.Float).Mul(power, q96)
|
||||
q96Int := new(big.Int)
|
||||
q96Int.SetString(Q96, 10)
|
||||
q96 := new(big.Float).SetInt(q96Int)
|
||||
price.Mul(price, q96)
|
||||
|
||||
// Convert to big.Int
|
||||
sqrtPriceX96 := new(big.Int)
|
||||
sqrtPrice.Int(sqrtPriceX96)
|
||||
price.Int(sqrtPriceX96)
|
||||
|
||||
return sqrtPriceX96
|
||||
}
|
||||
@@ -85,7 +91,9 @@ func SqrtPriceX96ToTick(sqrtPriceX96 *big.Int) int {
|
||||
|
||||
// Convert to big.Float
|
||||
sqrtPrice := new(big.Float).SetInt(sqrtPriceX96)
|
||||
q96 := new(big.Float).SetInt(new(big.Int).SetInt64(Q96))
|
||||
q96Int := new(big.Int)
|
||||
q96Int.SetString(Q96, 10)
|
||||
q96 := new(big.Float).SetInt(q96Int)
|
||||
|
||||
// Calculate sqrtPriceX96 / 2^96
|
||||
ratio := new(big.Float).Quo(sqrtPrice, q96)
|
||||
@@ -95,14 +103,15 @@ func SqrtPriceX96ToTick(sqrtPriceX96 *big.Int) int {
|
||||
|
||||
// Calculate log_1.0001(price)
|
||||
// log_1.0001(x) = ln(x) / ln(1.0001)
|
||||
lnPrice := new(big.Float).Log(price)
|
||||
lnBase := new(big.Float).Log(new(big.Float).SetFloat64(1.0001))
|
||||
logRatio := new(big.Float).Quo(lnPrice, lnBase)
|
||||
priceFloat, _ := price.Float64()
|
||||
lnPrice := math.Log(priceFloat)
|
||||
lnBase := math.Log(1.0001)
|
||||
logRatio := lnPrice / lnBase
|
||||
|
||||
// Convert to int
|
||||
tick, _ := logRatio.Int64()
|
||||
tick := int(logRatio)
|
||||
|
||||
return int(tick)
|
||||
return tick
|
||||
}
|
||||
|
||||
// GetTickAtSqrtPrice calculates the tick for a given sqrtPriceX96 using uint256
|
||||
|
||||
Reference in New Issue
Block a user