Add enhanced concurrency patterns, rate limiting, market management, and pipeline processing
This commit is contained in:
181
pkg/market/fan.go
Normal file
181
pkg/market/fan.go
Normal file
@@ -0,0 +1,181 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/internal/ratelimit"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
)
|
||||
|
||||
// FanManager manages fan-in/fan-out patterns for multiple data sources
|
||||
type FanManager struct {
|
||||
config *config.Config
|
||||
logger *logger.Logger
|
||||
rateLimiter *ratelimit.LimiterManager
|
||||
bufferSize int
|
||||
maxWorkers int
|
||||
}
|
||||
|
||||
// NewFanManager creates a new fan manager
|
||||
func NewFanManager(cfg *config.Config, logger *logger.Logger, rateLimiter *ratelimit.LimiterManager) *FanManager {
|
||||
return &FanManager{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
rateLimiter: rateLimiter,
|
||||
bufferSize: cfg.Bot.ChannelBufferSize,
|
||||
maxWorkers: cfg.Bot.MaxWorkers,
|
||||
}
|
||||
}
|
||||
|
||||
// FanOut distributes work across multiple workers
|
||||
func (fm *FanManager) FanOut(ctx context.Context, jobs <-chan *types.Transaction, numWorkers int) <-chan *types.Transaction {
|
||||
// Create the output channel
|
||||
out := make(chan *types.Transaction, fm.bufferSize)
|
||||
|
||||
// Create a wait group to wait for all workers
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Start the workers
|
||||
for i := 0; i < numWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func(workerID int) {
|
||||
defer wg.Done()
|
||||
fm.worker(ctx, jobs, out, workerID)
|
||||
}(i)
|
||||
}
|
||||
|
||||
// Close the output channel when all workers are done
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(out)
|
||||
}()
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// worker processes jobs from the input channel and sends results to the output channel
|
||||
func (fm *FanManager) worker(ctx context.Context, jobs <-chan *types.Transaction, out chan<- *types.Transaction, workerID int) {
|
||||
for {
|
||||
select {
|
||||
case job, ok := <-jobs:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Process the job (in this case, just pass it through)
|
||||
// In practice, you would do some processing here
|
||||
fm.logger.Debug(fmt.Sprintf("Worker %d processing transaction %s", workerID, job.Hash().Hex()))
|
||||
|
||||
// Simulate some work
|
||||
time.Sleep(10 * time.Millisecond)
|
||||
|
||||
// Send the result to the output channel
|
||||
select {
|
||||
case out <- job:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FanIn combines multiple input channels into a single output channel
|
||||
func (fm *FanManager) FanIn(ctx context.Context, inputs ...<-chan *types.Transaction) <-chan *types.Transaction {
|
||||
// Create the output channel
|
||||
out := make(chan *types.Transaction, fm.bufferSize)
|
||||
|
||||
// Create a wait group to wait for all input channels
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Start a goroutine for each input channel
|
||||
for i, input := range inputs {
|
||||
wg.Add(1)
|
||||
go func(inputID int, inputChan <-chan *types.Transaction) {
|
||||
defer wg.Done()
|
||||
fm.fanInWorker(ctx, inputChan, out, inputID)
|
||||
}(i, input)
|
||||
}
|
||||
|
||||
// Close the output channel when all input channels are done
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(out)
|
||||
}()
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// fanInWorker reads from an input channel and writes to the output channel
|
||||
func (fm *FanManager) fanInWorker(ctx context.Context, input <-chan *types.Transaction, out chan<- *types.Transaction, inputID int) {
|
||||
for {
|
||||
select {
|
||||
case job, ok := <-input:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Send the job to the output channel
|
||||
select {
|
||||
case out <- job:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Multiplex distributes transactions across multiple endpoints with rate limiting
|
||||
func (fm *FanManager) Multiplex(ctx context.Context, transactions <-chan *types.Transaction) []<-chan *types.Transaction {
|
||||
endpoints := fm.rateLimiter.GetEndpoints()
|
||||
outputs := make([]<-chan *types.Transaction, len(endpoints))
|
||||
|
||||
// Create a channel for each endpoint
|
||||
for i, endpoint := range endpoints {
|
||||
// Create a buffered channel for this endpoint
|
||||
endpointChan := make(chan *types.Transaction, fm.bufferSize)
|
||||
outputs[i] = endpointChan
|
||||
|
||||
// Start a worker for this endpoint
|
||||
go func(endpointURL string, outChan chan<- *types.Transaction) {
|
||||
defer close(outChan)
|
||||
|
||||
for {
|
||||
select {
|
||||
case tx, ok := <-transactions:
|
||||
if !ok {
|
||||
return // Input channel closed
|
||||
}
|
||||
|
||||
// Wait for rate limiter
|
||||
if err := fm.rateLimiter.WaitForLimit(ctx, endpointURL); err != nil {
|
||||
fm.logger.Error(fmt.Sprintf("Rate limiter error for %s: %v", endpointURL, err))
|
||||
continue
|
||||
}
|
||||
|
||||
// Send to endpoint-specific channel
|
||||
select {
|
||||
case outChan <- tx:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}(endpoint, endpointChan)
|
||||
}
|
||||
|
||||
return outputs
|
||||
}
|
||||
201
pkg/market/manager.go
Normal file
201
pkg/market/manager.go
Normal file
@@ -0,0 +1,201 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/holiman/uint256"
|
||||
"golang.org/x/sync/singleflight"
|
||||
)
|
||||
|
||||
// MarketManager manages market data and pool information
|
||||
type MarketManager struct {
|
||||
config *config.UniswapConfig
|
||||
logger *logger.Logger
|
||||
pools map[string]*PoolData
|
||||
mu sync.RWMutex
|
||||
cacheGroup singleflight.Group
|
||||
cacheDuration time.Duration
|
||||
maxCacheSize int
|
||||
}
|
||||
|
||||
// PoolData represents data for a Uniswap V3 pool
|
||||
type PoolData struct {
|
||||
Address common.Address
|
||||
Token0 common.Address
|
||||
Token1 common.Address
|
||||
Fee int64
|
||||
Liquidity *uint256.Int
|
||||
SqrtPriceX96 *uint256.Int
|
||||
Tick int
|
||||
TickSpacing int
|
||||
LastUpdated time.Time
|
||||
}
|
||||
|
||||
// NewMarketManager creates a new market manager
|
||||
func NewMarketManager(cfg *config.UniswapConfig, logger *logger.Logger) *MarketManager {
|
||||
return &MarketManager{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
pools: make(map[string]*PoolData),
|
||||
cacheDuration: time.Duration(cfg.Cache.Expiration) * time.Second,
|
||||
maxCacheSize: cfg.Cache.MaxSize,
|
||||
}
|
||||
}
|
||||
|
||||
// GetPool retrieves pool data, either from cache or by fetching it
|
||||
func (mm *MarketManager) GetPool(ctx context.Context, poolAddress common.Address) (*PoolData, error) {
|
||||
// Check if we have it in cache and it's still valid
|
||||
poolKey := poolAddress.Hex()
|
||||
|
||||
mm.mu.RLock()
|
||||
if pool, exists := mm.pools[poolKey]; exists {
|
||||
// Check if cache is still valid
|
||||
if time.Since(pool.LastUpdated) < mm.cacheDuration {
|
||||
mm.mu.RUnlock()
|
||||
return pool, nil
|
||||
}
|
||||
}
|
||||
mm.mu.RUnlock()
|
||||
|
||||
// Use singleflight to prevent duplicate requests for the same pool
|
||||
result, err, _ := mm.cacheGroup.Do(poolKey, func() (interface{}, error) {
|
||||
return mm.fetchPoolData(ctx, poolAddress)
|
||||
})
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pool := result.(*PoolData)
|
||||
|
||||
// Update cache
|
||||
mm.mu.Lock()
|
||||
// Check if we need to evict old entries
|
||||
if len(mm.pools) >= mm.maxCacheSize {
|
||||
mm.evictOldest()
|
||||
}
|
||||
mm.pools[poolKey] = pool
|
||||
mm.mu.Unlock()
|
||||
|
||||
return pool, nil
|
||||
}
|
||||
|
||||
// fetchPoolData fetches pool data from the blockchain
|
||||
func (mm *MarketManager) fetchPoolData(ctx context.Context, poolAddress common.Address) (*PoolData, error) {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would interact with the Ethereum blockchain to get real data
|
||||
|
||||
// For now, we'll return mock data
|
||||
pool := &PoolData{
|
||||
Address: poolAddress,
|
||||
Token0: common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"), // USDC
|
||||
Token1: common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"), // WETH
|
||||
Fee: 3000, // 0.3%
|
||||
Liquidity: uint256.NewInt(1000000000000000000), // 1 ETH equivalent
|
||||
SqrtPriceX96: uint256.NewInt(2505414483750470000), // Mock sqrt price
|
||||
Tick: 200000, // Mock tick
|
||||
TickSpacing: 60, // Tick spacing for 0.3% fee
|
||||
LastUpdated: time.Now(),
|
||||
}
|
||||
|
||||
mm.logger.Debug(fmt.Sprintf("Fetched pool data for %s", poolAddress.Hex()))
|
||||
|
||||
return pool, nil
|
||||
}
|
||||
|
||||
// evictOldest removes the oldest entry from the cache
|
||||
func (mm *MarketManager) evictOldest() {
|
||||
oldestKey := ""
|
||||
var oldestTime time.Time
|
||||
|
||||
for key, pool := range mm.pools {
|
||||
if oldestKey == "" || pool.LastUpdated.Before(oldestTime) {
|
||||
oldestKey = key
|
||||
oldestTime = pool.LastUpdated
|
||||
}
|
||||
}
|
||||
|
||||
if oldestKey != "" {
|
||||
delete(mm.pools, oldestKey)
|
||||
mm.logger.Debug(fmt.Sprintf("Evicted pool %s from cache", oldestKey))
|
||||
}
|
||||
}
|
||||
|
||||
// UpdatePool updates pool data
|
||||
func (mm *MarketManager) UpdatePool(poolAddress common.Address, liquidity *uint256.Int, sqrtPriceX96 *uint256.Int, tick int) {
|
||||
poolKey := poolAddress.Hex()
|
||||
|
||||
mm.mu.Lock()
|
||||
defer mm.mu.Unlock()
|
||||
|
||||
if pool, exists := mm.pools[poolKey]; exists {
|
||||
pool.Liquidity = liquidity
|
||||
pool.SqrtPriceX96 = sqrtPriceX96
|
||||
pool.Tick = tick
|
||||
pool.LastUpdated = time.Now()
|
||||
} else {
|
||||
// Create new pool entry
|
||||
pool := &PoolData{
|
||||
Address: poolAddress,
|
||||
Liquidity: liquidity,
|
||||
SqrtPriceX96: sqrtPriceX96,
|
||||
Tick: tick,
|
||||
LastUpdated: time.Now(),
|
||||
}
|
||||
mm.pools[poolKey] = pool
|
||||
}
|
||||
}
|
||||
|
||||
// GetPoolsByTokens retrieves pools for a pair of tokens
|
||||
func (mm *MarketManager) GetPoolsByTokens(token0, token1 common.Address) []*PoolData {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
pools := make([]*PoolData, 0)
|
||||
|
||||
for _, pool := range mm.pools {
|
||||
// Check if this pool contains the token pair
|
||||
if (pool.Token0 == token0 && pool.Token1 == token1) ||
|
||||
(pool.Token0 == token1 && pool.Token1 == token0) {
|
||||
pools = append(pools, pool)
|
||||
}
|
||||
}
|
||||
|
||||
return pools
|
||||
}
|
||||
|
||||
// GetAllPools returns all cached pools
|
||||
func (mm *MarketManager) GetAllPools() []*PoolData {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
pools := make([]*PoolData, 0, len(mm.pools))
|
||||
for _, pool := range mm.pools {
|
||||
pools = append(pools, pool)
|
||||
}
|
||||
|
||||
return pools
|
||||
}
|
||||
|
||||
// ClearCache clears all cached pool data
|
||||
func (mm *MarketManager) ClearCache() {
|
||||
mm.mu.Lock()
|
||||
defer mm.mu.Unlock()
|
||||
|
||||
mm.pools = make(map[string]*PoolData)
|
||||
mm.logger.Info("Cleared pool cache")
|
||||
}
|
||||
|
||||
// GetCacheStats returns cache statistics
|
||||
func (mm *MarketManager) GetCacheStats() (int, int) {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
return len(mm.pools), mm.maxCacheSize
|
||||
}
|
||||
249
pkg/market/pipeline.go
Normal file
249
pkg/market/pipeline.go
Normal file
@@ -0,0 +1,249 @@
|
||||
package market
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/your-username/mev-beta/internal/config"
|
||||
"github.com/your-username/mev-beta/internal/logger"
|
||||
"github.com/your-username/mev-beta/pkg/scanner"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/holiman/uint256"
|
||||
)
|
||||
|
||||
// Pipeline processes transactions through multiple stages
|
||||
type Pipeline struct {
|
||||
config *config.BotConfig
|
||||
logger *logger.Logger
|
||||
marketMgr *MarketManager
|
||||
scanner *scanner.MarketScanner
|
||||
stages []PipelineStage
|
||||
bufferSize int
|
||||
concurrency int
|
||||
}
|
||||
|
||||
// PipelineStage represents a stage in the processing pipeline
|
||||
type PipelineStage func(context.Context, <-chan *types.Transaction, chan<- *scanner.SwapDetails) error
|
||||
|
||||
// NewPipeline creates a new transaction processing pipeline
|
||||
func NewPipeline(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
scanner *scanner.MarketScanner,
|
||||
) *Pipeline {
|
||||
return &Pipeline{
|
||||
config: cfg,
|
||||
logger: logger,
|
||||
marketMgr: marketMgr,
|
||||
scanner: scanner,
|
||||
bufferSize: cfg.ChannelBufferSize,
|
||||
concurrency: cfg.MaxWorkers,
|
||||
}
|
||||
}
|
||||
|
||||
// AddStage adds a processing stage to the pipeline
|
||||
func (p *Pipeline) AddStage(stage PipelineStage) {
|
||||
p.stages = append(p.stages, stage)
|
||||
}
|
||||
|
||||
// ProcessTransactions processes a batch of transactions through the pipeline
|
||||
func (p *Pipeline) ProcessTransactions(ctx context.Context, transactions []*types.Transaction) error {
|
||||
if len(p.stages) == 0 {
|
||||
return fmt.Errorf("no pipeline stages configured")
|
||||
}
|
||||
|
||||
// Create the initial input channel
|
||||
inputChan := make(chan *types.Transaction, p.bufferSize)
|
||||
|
||||
// Send transactions to the input channel
|
||||
go func() {
|
||||
defer close(inputChan)
|
||||
for _, tx := range transactions {
|
||||
select {
|
||||
case inputChan <- tx:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
// Process through each stage
|
||||
var currentChan <-chan *scanner.SwapDetails = nil
|
||||
|
||||
for i, stage := range p.stages {
|
||||
// Create output channel for this stage
|
||||
outputChan := make(chan *scanner.SwapDetails, p.bufferSize)
|
||||
|
||||
// For the first stage, we need to convert transactions to swap details
|
||||
if i == 0 {
|
||||
// Special handling for first stage
|
||||
go func(stage PipelineStage, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) {
|
||||
defer close(output)
|
||||
err := stage(ctx, input, output)
|
||||
if err != nil {
|
||||
p.logger.Error(fmt.Sprintf("Pipeline stage %d error: %v", i, err))
|
||||
}
|
||||
}(stage, inputChan, outputChan)
|
||||
} else {
|
||||
// For subsequent stages
|
||||
go func(stage PipelineStage, input <-chan *scanner.SwapDetails, output chan<- *scanner.SwapDetails) {
|
||||
defer close(output)
|
||||
// We need to create a dummy input channel for this stage
|
||||
// This is a simplification - in practice you'd have a more complex pipeline
|
||||
dummyInput := make(chan *types.Transaction, p.bufferSize)
|
||||
close(dummyInput)
|
||||
err := stage(ctx, dummyInput, output)
|
||||
if err != nil {
|
||||
p.logger.Error(fmt.Sprintf("Pipeline stage %d error: %v", i, err))
|
||||
}
|
||||
}(stage, currentChan, outputChan)
|
||||
}
|
||||
|
||||
currentChan = outputChan
|
||||
}
|
||||
|
||||
// Process the final output
|
||||
if currentChan != nil {
|
||||
go p.processSwapDetails(ctx, currentChan)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// processSwapDetails processes the final output of the pipeline
|
||||
func (p *Pipeline) processSwapDetails(ctx context.Context, swapDetails <-chan *scanner.SwapDetails) {
|
||||
for {
|
||||
select {
|
||||
case swap, ok := <-swapDetails:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Submit to the market scanner for processing
|
||||
p.scanner.SubmitSwap(*swap)
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TransactionDecoderStage decodes transactions to identify swap opportunities
|
||||
func TransactionDecoderStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
var wg sync.WaitGroup
|
||||
|
||||
// Process transactions concurrently
|
||||
for i := 0; i < cfg.MaxWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
for {
|
||||
select {
|
||||
case tx, ok := <-input:
|
||||
if !ok {
|
||||
return // Channel closed
|
||||
}
|
||||
|
||||
// Process the transaction
|
||||
swapDetails := decodeTransaction(tx, logger)
|
||||
if swapDetails != nil {
|
||||
select {
|
||||
case output <- swapDetails:
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Wait for all workers to finish
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(output)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// decodeTransaction decodes a transaction to extract swap details
|
||||
func decodeTransaction(tx *types.Transaction, logger *logger.Logger) *scanner.SwapDetails {
|
||||
// This is a simplified implementation
|
||||
// In practice, you would:
|
||||
// 1. Check if the transaction is calling a Uniswap-like contract
|
||||
// 2. Decode the function call data
|
||||
// 3. Extract token addresses, amounts, etc.
|
||||
|
||||
// For now, we'll return mock data for demonstration
|
||||
if tx.To() != nil {
|
||||
swap := &scanner.SwapDetails{
|
||||
PoolAddress: tx.To().Hex(),
|
||||
Token0: "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", // USDC
|
||||
Token1: "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2", // WETH
|
||||
Amount0In: big.NewInt(1000000000), // 1000 USDC
|
||||
Amount0Out: big.NewInt(0),
|
||||
Amount1In: big.NewInt(0),
|
||||
Amount1Out: big.NewInt(500000000000000000), // 0.5 WETH
|
||||
SqrtPriceX96: uint256.NewInt(2505414483750470000),
|
||||
Liquidity: uint256.NewInt(1000000000000000000),
|
||||
Tick: 200000,
|
||||
Timestamp: time.Now(),
|
||||
TransactionHash: tx.Hash(),
|
||||
}
|
||||
|
||||
logger.Debug(fmt.Sprintf("Decoded swap transaction: %s", tx.Hash().Hex()))
|
||||
return swap
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarketAnalysisStage performs market analysis on swap details
|
||||
func MarketAnalysisStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
// This is a placeholder for market analysis
|
||||
// In practice, you would:
|
||||
// 1. Get pool data from market manager
|
||||
// 2. Analyze price impact
|
||||
// 3. Check for arbitrage opportunities
|
||||
|
||||
close(output)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// ArbitrageDetectionStage detects arbitrage opportunities
|
||||
func ArbitrageDetectionStage(
|
||||
cfg *config.BotConfig,
|
||||
logger *logger.Logger,
|
||||
marketMgr *MarketManager,
|
||||
) PipelineStage {
|
||||
return func(ctx context.Context, input <-chan *types.Transaction, output chan<- *scanner.SwapDetails) error {
|
||||
// This is a placeholder for arbitrage detection
|
||||
// In practice, you would:
|
||||
// 1. Compare prices across multiple pools
|
||||
// 2. Calculate potential profit
|
||||
// 3. Filter based on profitability
|
||||
|
||||
close(output)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user