Add enhanced concurrency patterns, rate limiting, market management, and pipeline processing

This commit is contained in:
Krypto Kajun
2025-09-12 01:35:50 -05:00
parent 300976219a
commit fbb85e529a
17 changed files with 1440 additions and 190 deletions

246
pkg/scanner/concurrent.go Normal file
View File

@@ -0,0 +1,246 @@
package scanner
import (
"fmt"
"math/big"
"sync"
"time"
"github.com/your-username/mev-beta/internal/config"
"github.com/your-username/mev-beta/internal/logger"
"github.com/your-username/mev-beta/pkg/uniswap"
"github.com/ethereum/go-ethereum/common"
"github.com/holiman/uint256"
)
// MarketScanner scans markets for price movement opportunities with concurrency
type MarketScanner struct {
config *config.BotConfig
logger *logger.Logger
workerPool chan chan SwapDetails
workers []*SwapWorker
wg sync.WaitGroup
}
// SwapWorker represents a worker that processes swap details
type SwapWorker struct {
ID int
WorkerPool chan chan SwapDetails
JobChannel chan SwapDetails
QuitChan chan bool
scanner *MarketScanner
}
// NewMarketScanner creates a new market scanner with concurrency support
func NewMarketScanner(cfg *config.BotConfig, logger *logger.Logger) *MarketScanner {
scanner := &MarketScanner{
config: cfg,
logger: logger,
workerPool: make(chan chan SwapDetails, cfg.MaxWorkers),
workers: make([]*SwapWorker, 0, cfg.MaxWorkers),
}
// Create workers
for i := 0; i < cfg.MaxWorkers; i++ {
worker := NewSwapWorker(i, scanner.workerPool, scanner)
scanner.workers = append(scanner.workers, worker)
worker.Start()
}
return scanner
}
// NewSwapWorker creates a new swap worker
func NewSwapWorker(id int, workerPool chan chan SwapDetails, scanner *MarketScanner) *SwapWorker {
return &SwapWorker{
ID: id,
WorkerPool: workerPool,
JobChannel: make(chan SwapDetails),
QuitChan: make(chan bool),
scanner: scanner,
}
}
// Start begins the worker
func (w *SwapWorker) Start() {
go func() {
for {
// Register the worker in the worker pool
w.WorkerPool <- w.JobChannel
select {
case job := <-w.JobChannel:
// Process the job
w.Process(job)
case <-w.QuitChan:
// Stop the worker
return
}
}
}()
}
// Stop terminates the worker
func (w *SwapWorker) Stop() {
go func() {
w.QuitChan <- true
}()
}
// Process handles a swap detail
func (w *SwapWorker) Process(swap SwapDetails) {
// Analyze the swap in a separate goroutine to maintain throughput
go func() {
defer w.scanner.wg.Done()
// Log the processing
w.scanner.logger.Debug(fmt.Sprintf("Worker %d processing swap in pool %s", w.ID, swap.PoolAddress))
// Analyze the swap
priceMovement, err := w.scanner.AnalyzeSwap(swap)
if err != nil {
w.scanner.logger.Error(fmt.Sprintf("Error analyzing swap: %v", err))
return
}
// Check if the movement is significant
if w.scanner.IsSignificantMovement(priceMovement, w.scanner.config.MinProfitThreshold) {
w.scanner.logger.Info(fmt.Sprintf("Significant price movement detected: %+v", priceMovement))
// TODO: Send to arbitrage engine
}
}()
}
// SubmitSwap submits a swap for processing by the worker pool
func (s *MarketScanner) SubmitSwap(swap SwapDetails) {
s.wg.Add(1)
// Get an available worker job channel
jobChannel := <-s.workerPool
// Send the job to the worker
jobChannel <- swap
}
// AnalyzeSwap analyzes a swap to determine if it's large enough to move the price
func (s *MarketScanner) AnalyzeSwap(swap SwapDetails) (*PriceMovement, error) {
// Calculate the price before the swap
priceBefore := uniswap.SqrtPriceX96ToPrice(swap.SqrtPriceX96.ToBig())
// For a more accurate calculation, we would need to:
// 1. Calculate the new sqrtPriceX96 after the swap
// 2. Convert that to a price
// 3. Calculate the price impact
priceMovement := &PriceMovement{
Token0: swap.Token0,
Token1: swap.Token1,
Pool: swap.PoolAddress,
AmountIn: new(big.Int).Add(swap.Amount0In, swap.Amount1In),
AmountOut: new(big.Int).Add(swap.Amount0Out, swap.Amount1Out),
PriceBefore: priceBefore,
TickBefore: swap.Tick,
// TickAfter would be calculated based on the swap size and liquidity
}
// Calculate price impact (simplified)
// In practice, this would involve more complex calculations using Uniswap V3 math
if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 {
impact := new(big.Float).Quo(
new(big.Float).SetInt(priceMovement.AmountOut),
new(big.Float).SetInt(priceMovement.AmountIn),
)
priceImpact, _ := impact.Float64()
priceMovement.PriceImpact = priceImpact
}
return priceMovement, nil
}
// IsSignificantMovement determines if a price movement is significant enough to exploit
func (s *MarketScanner) IsSignificantMovement(movement *PriceMovement, threshold float64) bool {
// Check if the price impact is above our threshold
return movement.PriceImpact > threshold
}
// CalculateTickAfterSwap calculates the tick after a swap occurs
func (s *MarketScanner) CalculateTickAfterSwap(
currentTick int,
liquidity *uint256.Int,
amountIn *big.Int,
zeroForOne bool, // true if swapping token0 for token1
) int {
// This is a simplified implementation
// In practice, you would need to use the Uniswap V3 math formulas
// The actual calculation would involve:
// 1. Converting amounts to sqrt prices
// 2. Using the liquidity to determine the price movement
// 3. Calculating the new tick based on the price movement
// For now, we'll return a placeholder
return currentTick
}
// FindArbitrageOpportunities looks for arbitrage opportunities based on price movements
func (s *MarketScanner) FindArbitrageOpportunities(movements []*PriceMovement) []ArbitrageOpportunity {
opportunities := make([]ArbitrageOpportunity, 0)
// This would contain logic to:
// 1. Compare prices across different pools
// 2. Calculate potential profit after gas costs
// 3. Identify triangular arbitrage opportunities
// 4. Check if the opportunity is profitable
return opportunities
}
// Stop stops the market scanner and all workers
func (s *MarketScanner) Stop() {
// Stop all workers
for _, worker := range s.workers {
worker.Stop()
}
// Wait for all jobs to complete
s.wg.Wait()
}
// ArbitrageOpportunity represents a potential arbitrage opportunity
type ArbitrageOpportunity struct {
Path []string // Token path for the arbitrage
Pools []string // Pools involved in the arbitrage
Profit *big.Int // Estimated profit in wei
GasEstimate *big.Int // Estimated gas cost
ROI float64 // Return on investment percentage
}
// PriceMovement represents a potential price movement
type PriceMovement struct {
Token0 string // Token address
Token1 string // Token address
Pool string // Pool address
AmountIn *big.Int // Amount of token being swapped in
AmountOut *big.Int // Amount of token being swapped out
PriceBefore *big.Float // Price before the swap
PriceAfter *big.Float // Price after the swap (to be calculated)
PriceImpact float64 // Calculated price impact
TickBefore int // Tick before the swap
TickAfter int // Tick after the swap (to be calculated)
}
// SwapDetails contains details about a detected swap
type SwapDetails struct {
PoolAddress string
Token0 string
Token1 string
Amount0In *big.Int
Amount0Out *big.Int
Amount1In *big.Int
Amount1Out *big.Int
SqrtPriceX96 *uint256.Int
Liquidity *uint256.Int
Tick int
Timestamp time.Time
TransactionHash common.Hash
}

View File

@@ -1,122 +1,2 @@
package scanner
import (
"math/big"
"github.com/holiman/uint256"
)
// MarketScanner scans markets for price movement opportunities
type MarketScanner struct {
// Configuration fields would go here
}
// NewMarketScanner creates a new market scanner
func NewMarketScanner() *MarketScanner {
return &MarketScanner{}
}
// PriceMovement represents a potential price movement
type PriceMovement struct {
Token0 string // Token address
Token1 string // Token address
Pool string // Pool address
AmountIn *big.Int // Amount of token being swapped in
AmountOut *big.Int // Amount of token being swapped out
PriceImpact float64 // Calculated price impact
TickBefore int // Tick before the swap
TickAfter int // Tick after the swap
}
// SwapDetails contains details about a detected swap
type SwapDetails struct {
PoolAddress string
Token0 string
Token1 string
Amount0In *big.Int
Amount0Out *big.Int
Amount1In *big.Int
Amount1Out *big.Int
SqrtPriceX96 *uint256.Int
Liquidity *uint256.Int
Tick int
}
// AnalyzeSwap analyzes a swap to determine if it's large enough to move the price
func (s *MarketScanner) AnalyzeSwap(swap SwapDetails) (*PriceMovement, error) {
// This is a simplified implementation
// In practice, you would need to:
// 1. Calculate the price before the swap
// 2. Calculate the price after the swap
// 3. Determine the price impact
priceMovement := &PriceMovement{
Token0: swap.Token0,
Token1: swap.Token1,
Pool: swap.PoolAddress,
AmountIn: new(big.Int).Add(swap.Amount0In, swap.Amount1In),
AmountOut: new(big.Int).Add(swap.Amount0Out, swap.Amount1Out),
TickBefore: swap.Tick,
// TickAfter would be calculated based on the swap size and liquidity
}
// Calculate price impact (simplified)
// In practice, this would involve more complex calculations
if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 {
impact := new(big.Float).Quo(
new(big.Float).SetInt(priceMovement.AmountOut),
new(big.Float).SetInt(priceMovement.AmountIn),
)
priceImpact, _ := impact.Float64()
priceMovement.PriceImpact = priceImpact
}
return priceMovement, nil
}
// IsSignificantMovement determines if a price movement is significant enough to exploit
func (s *MarketScanner) IsSignificantMovement(movement *PriceMovement, threshold float64) bool {
// Check if the price impact is above our threshold
return movement.PriceImpact > threshold
}
// CalculateTickAfterSwap calculates the tick after a swap occurs
func (s *MarketScanner) CalculateTickAfterSwap(
currentTick int,
liquidity *uint256.Int,
amountIn *big.Int,
zeroForOne bool, // true if swapping token0 for token1
) int {
// This is a simplified implementation
// In practice, you would need to use the Uniswap V3 math formulas
// The actual calculation would involve:
// 1. Converting amounts to sqrt prices
// 2. Using the liquidity to determine the price movement
// 3. Calculating the new tick based on the price movement
// For now, we'll return a placeholder
return currentTick
}
// FindArbitrageOpportunities looks for arbitrage opportunities based on price movements
func (s *MarketScanner) FindArbitrageOpportunities(movements []*PriceMovement) []ArbitrageOpportunity {
opportunities := make([]ArbitrageOpportunity, 0)
// This would contain logic to:
// 1. Compare prices across different pools
// 2. Calculate potential profit after gas costs
// 3. Identify triangular arbitrage opportunities
// 4. Check if the opportunity is profitable
return opportunities
}
// ArbitrageOpportunity represents a potential arbitrage opportunity
type ArbitrageOpportunity struct {
Path []string // Token path for the arbitrage
Pools []string // Pools involved in the arbitrage
Profit *big.Int // Estimated profit in wei
GasEstimate *big.Int // Estimated gas cost
ROI float64 // Return on investment percentage
}
// Deprecated: Use concurrent.go instead
package scanner