package scanner import ( "fmt" "math/big" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/fraktal/mev-beta/internal/config" "github.com/fraktal/mev-beta/internal/logger" "github.com/fraktal/mev-beta/pkg/circuit" "github.com/fraktal/mev-beta/pkg/events" "github.com/fraktal/mev-beta/pkg/trading" "github.com/fraktal/mev-beta/pkg/uniswap" "github.com/holiman/uint256" "golang.org/x/sync/singleflight" ) // MarketScanner scans markets for price movement opportunities with concurrency type MarketScanner struct { config *config.BotConfig logger *logger.Logger workerPool chan chan events.Event workers []*EventWorker wg sync.WaitGroup cacheGroup singleflight.Group cache map[string]*CachedData cacheMutex sync.RWMutex cacheTTL time.Duration slippageProtector *trading.SlippageProtection circuitBreaker *circuit.CircuitBreaker } // EventWorker represents a worker that processes event details type EventWorker struct { ID int WorkerPool chan chan events.Event JobChannel chan events.Event QuitChan chan bool scanner *MarketScanner } // NewMarketScanner creates a new market scanner with concurrency support func NewMarketScanner(cfg *config.BotConfig, logger *logger.Logger) *MarketScanner { scanner := &MarketScanner{ config: cfg, logger: logger, workerPool: make(chan chan events.Event, cfg.MaxWorkers), workers: make([]*EventWorker, 0, cfg.MaxWorkers), cache: make(map[string]*CachedData), cacheTTL: time.Duration(cfg.RPCTimeout) * time.Second, slippageProtector: trading.NewSlippageProtection(logger), circuitBreaker: circuit.NewCircuitBreaker(&circuit.Config{ Logger: logger, Name: "market_scanner", MaxFailures: 10, ResetTimeout: time.Minute * 5, MaxRequests: 3, SuccessThreshold: 2, }), } // Create workers for i := 0; i < cfg.MaxWorkers; i++ { worker := NewEventWorker(i, scanner.workerPool, scanner) scanner.workers = append(scanner.workers, worker) worker.Start() } // Start cache cleanup routine go scanner.cleanupCache() return scanner } // NewEventWorker creates a new event worker func NewEventWorker(id int, workerPool chan chan events.Event, scanner *MarketScanner) *EventWorker { return &EventWorker{ ID: id, WorkerPool: workerPool, JobChannel: make(chan events.Event), QuitChan: make(chan bool), scanner: scanner, } } // Start begins the worker func (w *EventWorker) Start() { go func() { for { // Register the worker in the worker pool w.WorkerPool <- w.JobChannel select { case job := <-w.JobChannel: // Process the job w.Process(job) case <-w.QuitChan: // Stop the worker return } } }() } // Stop terminates the worker func (w *EventWorker) Stop() { go func() { w.QuitChan <- true }() } // Process handles an event detail func (w *EventWorker) Process(event events.Event) { // Analyze the event in a separate goroutine to maintain throughput go func() { defer w.scanner.wg.Done() // Log the processing w.scanner.logger.Debug(fmt.Sprintf("Worker %d processing %s event in pool %s from protocol %s", w.ID, event.Type.String(), event.PoolAddress, event.Protocol)) // Analyze based on event type switch event.Type { case events.Swap: w.scanner.analyzeSwapEvent(event) case events.AddLiquidity: w.scanner.analyzeLiquidityEvent(event, true) case events.RemoveLiquidity: w.scanner.analyzeLiquidityEvent(event, false) case events.NewPool: w.scanner.analyzeNewPoolEvent(event) default: w.scanner.logger.Debug(fmt.Sprintf("Worker %d received unknown event type: %d", w.ID, event.Type)) } }() } // SubmitEvent submits an event for processing by the worker pool func (s *MarketScanner) SubmitEvent(event events.Event) { s.wg.Add(1) // Get an available worker job channel jobChannel := <-s.workerPool // Send the job to the worker jobChannel <- event } // analyzeSwapEvent analyzes a swap event for arbitrage opportunities func (s *MarketScanner) analyzeSwapEvent(event events.Event) { s.logger.Debug(fmt.Sprintf("Analyzing swap event in pool %s", event.PoolAddress)) // Get pool data with caching poolData, err := s.getPoolData(event.PoolAddress.Hex()) if err != nil { s.logger.Error(fmt.Sprintf("Error getting pool data for %s: %v", event.PoolAddress, err)) return } // Calculate price impact priceMovement, err := s.calculatePriceMovement(event, poolData) if err != nil { s.logger.Error(fmt.Sprintf("Error calculating price movement for pool %s: %v", event.PoolAddress, err)) return } // Check if the movement is significant if s.isSignificantMovement(priceMovement, s.config.MinProfitThreshold) { s.logger.Info(fmt.Sprintf("Significant price movement detected in pool %s: %+v", event.PoolAddress, priceMovement)) // Look for arbitrage opportunities opportunities := s.findArbitrageOpportunities(event, priceMovement) if len(opportunities) > 0 { s.logger.Info(fmt.Sprintf("Found %d arbitrage opportunities for pool %s", len(opportunities), event.PoolAddress)) for _, opp := range opportunities { s.logger.Info(fmt.Sprintf("Arbitrage opportunity: %+v", opp)) } } } else { s.logger.Debug(fmt.Sprintf("Price movement in pool %s is not significant: %f", event.PoolAddress, priceMovement.PriceImpact)) } } // analyzeLiquidityEvent analyzes liquidity events (add/remove) func (s *MarketScanner) analyzeLiquidityEvent(event events.Event, isAdd bool) { action := "adding" if !isAdd { action = "removing" } s.logger.Debug(fmt.Sprintf("Analyzing liquidity event (%s) in pool %s", action, event.PoolAddress)) // Update cached pool data s.updatePoolData(event) s.logger.Info(fmt.Sprintf("Liquidity %s event processed for pool %s", action, event.PoolAddress)) } // analyzeNewPoolEvent analyzes new pool creation events func (s *MarketScanner) analyzeNewPoolEvent(event events.Event) { s.logger.Info(fmt.Sprintf("New pool created: %s (protocol: %s)", event.PoolAddress, event.Protocol)) // Add to known pools // In a real implementation, you would want to fetch and cache the pool data s.logger.Debug(fmt.Sprintf("Added new pool %s to monitoring", event.PoolAddress)) } // calculatePriceMovement calculates the price movement from a swap event func (s *MarketScanner) calculatePriceMovement(event events.Event, poolData *CachedData) (*PriceMovement, error) { // Calculate the price before the swap using Uniswap V3 math priceBefore := uniswap.SqrtPriceX96ToPrice(poolData.SqrtPriceX96.ToBig()) // For a more accurate calculation, we would need to: // 1. Calculate the price after the swap using Uniswap V3 math // 2. Account for liquidity changes // 3. Consider the tick spacing and fee priceMovement := &PriceMovement{ Token0: event.Token0.Hex(), Token1: event.Token1.Hex(), Pool: event.PoolAddress.Hex(), Protocol: event.Protocol, AmountIn: new(big.Int).Set(event.Amount0), AmountOut: new(big.Int).Set(event.Amount1), PriceBefore: priceBefore, TickBefore: event.Tick, Timestamp: time.Now(), // In a real implementation, use the actual event timestamp } // Calculate price impact using a more realistic approach // For Uniswap V3, price impact is roughly amountIn / liquidity if event.Liquidity != nil && event.Liquidity.Sign() > 0 && event.Amount0 != nil && event.Amount0.Sign() > 0 { liquidityFloat := new(big.Float).SetInt(event.Liquidity.ToBig()) amountInFloat := new(big.Float).SetInt(event.Amount0) // Price impact ≈ amountIn / liquidity priceImpact := new(big.Float).Quo(amountInFloat, liquidityFloat) priceImpactFloat, _ := priceImpact.Float64() priceMovement.PriceImpact = priceImpactFloat } else if priceMovement.AmountIn.Cmp(big.NewInt(0)) > 0 { // Fallback calculation impact := new(big.Float).Quo( new(big.Float).SetInt(priceMovement.AmountOut), new(big.Float).SetInt(priceMovement.AmountIn), ) priceImpact, _ := impact.Float64() priceMovement.PriceImpact = priceImpact } return priceMovement, nil } // isSignificantMovement determines if a price movement is significant enough to exploit func (s *MarketScanner) isSignificantMovement(movement *PriceMovement, threshold float64) bool { // Check if the price impact is above our threshold if movement.PriceImpact > threshold { return true } // Also check if the absolute amount is significant if movement.AmountIn != nil && movement.AmountIn.Cmp(big.NewInt(1000000000000000000)) > 0 { // 1 ETH return true } // For smaller amounts, we need a higher price impact to be significant if movement.AmountIn != nil && movement.AmountIn.Cmp(big.NewInt(100000000000000000)) > 0 { // 0.1 ETH return movement.PriceImpact > threshold/2 } return false } // findRelatedPools finds pools that trade the same token pair func (s *MarketScanner) findRelatedPools(token0, token1 common.Address) []*CachedData { s.logger.Debug(fmt.Sprintf("Finding related pools for token pair %s-%s", token0.Hex(), token1.Hex())) relatedPools := make([]*CachedData, 0) // In a real implementation, this would query a pool registry or // search through known pools for pools with the same token pair // For now, we'll return some mock data // Check if we have cached data for common pools commonPools := []string{ "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640", // USDC/WETH Uniswap V3 0.05% "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc", // USDC/WETH Uniswap V2 0.3% } for _, poolAddr := range commonPools { poolData, err := s.getPoolData(poolAddr) if err != nil { s.logger.Debug(fmt.Sprintf("No data for pool %s: %v", poolAddr, err)) continue } // Check if this pool trades the same token pair (in either direction) if (poolData.Token0 == token0 && poolData.Token1 == token1) || (poolData.Token0 == token1 && poolData.Token1 == token0) { relatedPools = append(relatedPools, poolData) } } s.logger.Debug(fmt.Sprintf("Found %d related pools", len(relatedPools))) return relatedPools } // estimateProfit estimates the potential profit from an arbitrage opportunity func (s *MarketScanner) estimateProfit(event events.Event, pool *CachedData, priceDiff float64) *big.Int { // This is a simplified profit estimation // In practice, this would involve complex calculations including: // - Precise Uniswap V3 math for swap calculations // - Gas cost estimation // - Slippage calculations // - Path optimization // For now, we'll use a simplified calculation amountIn := new(big.Int).Set(event.Amount0) priceDiffInt := big.NewInt(int64(priceDiff * 1000000)) // Scale for integer math // Estimated profit = amount * price difference profit := new(big.Int).Mul(amountIn, priceDiffInt) profit = profit.Div(profit, big.NewInt(1000000)) // Subtract estimated gas costs gasCost := big.NewInt(300000) // Rough estimate profit = profit.Sub(profit, gasCost) // Ensure profit is positive if profit.Sign() <= 0 { return big.NewInt(0) } return profit } // findTriangularArbitrageOpportunities looks for triangular arbitrage opportunities func (s *MarketScanner) findTriangularArbitrageOpportunities(event events.Event) []ArbitrageOpportunity { s.logger.Debug(fmt.Sprintf("Searching for triangular arbitrage opportunities involving pool %s", event.PoolAddress.Hex())) opportunities := make([]ArbitrageOpportunity, 0) // This would implement logic to find triangular arbitrage paths like: // TokenA -> TokenB -> TokenC -> TokenA // where the end balance of TokenA is greater than the starting balance // For now, we'll return an empty slice // A full implementation would: // 1. Identify common triangular paths (e.g., USDC -> WETH -> WBTC -> USDC) // 2. Calculate the output of each leg of the trade // 3. Account for all fees and slippage // 4. Compare the final amount with the initial amount return opportunities } // findArbitrageOpportunities looks for arbitrage opportunities based on price movements func (s *MarketScanner) findArbitrageOpportunities(event events.Event, movement *PriceMovement) []ArbitrageOpportunity { s.logger.Debug(fmt.Sprintf("Searching for arbitrage opportunities for pool %s", event.PoolAddress)) opportunities := make([]ArbitrageOpportunity, 0) // Get related pools for the same token pair relatedPools := s.findRelatedPools(event.Token0, event.Token1) // If we have related pools, compare prices if len(relatedPools) > 0 { // Get the current price in this pool currentPrice := movement.PriceBefore // Compare with prices in related pools for _, pool := range relatedPools { // Skip the same pool if pool.Address == event.PoolAddress { continue } // Get pool data poolData, err := s.getPoolData(pool.Address.Hex()) if err != nil { s.logger.Error(fmt.Sprintf("Error getting pool data for related pool %s: %v", pool.Address.Hex(), err)) continue } // Check if poolData.SqrtPriceX96 is nil to prevent panic if poolData.SqrtPriceX96 == nil { s.logger.Error(fmt.Sprintf("Pool data for %s has nil SqrtPriceX96", pool.Address.Hex())) continue } // Calculate price in the related pool relatedPrice := uniswap.SqrtPriceX96ToPrice(poolData.SqrtPriceX96.ToBig()) // Check if currentPrice or relatedPrice is nil to prevent panic if currentPrice == nil || relatedPrice == nil { s.logger.Error(fmt.Sprintf("Nil price detected for pool comparison")) continue } // Calculate price difference priceDiff := new(big.Float).Sub(currentPrice, relatedPrice) priceDiffRatio := new(big.Float).Quo(priceDiff, relatedPrice) // If there's a significant price difference, we might have an arbitrage opportunity priceDiffFloat, _ := priceDiffRatio.Float64() if priceDiffFloat > 0.005 { // 0.5% threshold // Estimate potential profit estimatedProfit := s.estimateProfit(event, pool, priceDiffFloat) if estimatedProfit != nil && estimatedProfit.Sign() > 0 { opp := ArbitrageOpportunity{ Path: []string{event.Token0.Hex(), event.Token1.Hex()}, Pools: []string{event.PoolAddress.Hex(), pool.Address.Hex()}, Profit: estimatedProfit, GasEstimate: big.NewInt(300000), // Estimated gas cost ROI: priceDiffFloat * 100, // Convert to percentage Protocol: fmt.Sprintf("%s->%s", event.Protocol, pool.Protocol), } opportunities = append(opportunities, opp) s.logger.Info(fmt.Sprintf("Found arbitrage opportunity: %+v", opp)) } } } } // Also look for triangular arbitrage opportunities triangularOpps := s.findTriangularArbitrageOpportunities(event) opportunities = append(opportunities, triangularOpps...) return opportunities } // Stop stops the market scanner and all workers func (s *MarketScanner) Stop() { // Stop all workers for _, worker := range s.workers { worker.Stop() } // Wait for all jobs to complete s.wg.Wait() } // ArbitrageOpportunity represents a potential arbitrage opportunity type ArbitrageOpportunity struct { Path []string // Token path for the arbitrage Pools []string // Pools involved in the arbitrage Profit *big.Int // Estimated profit in wei GasEstimate *big.Int // Estimated gas cost ROI float64 // Return on investment percentage Protocol string // DEX protocol } // PriceMovement represents a potential price movement type PriceMovement struct { Token0 string // Token address Token1 string // Token address Pool string // Pool address Protocol string // DEX protocol AmountIn *big.Int // Amount of token being swapped in AmountOut *big.Int // Amount of token being swapped out PriceBefore *big.Float // Price before the swap PriceAfter *big.Float // Price after the swap (to be calculated) PriceImpact float64 // Calculated price impact TickBefore int // Tick before the swap TickAfter int // Tick after the swap (to be calculated) Timestamp time.Time // Event timestamp } // CachedData represents cached pool data type CachedData struct { Address common.Address Token0 common.Address Token1 common.Address Fee int64 Liquidity *uint256.Int SqrtPriceX96 *uint256.Int Tick int TickSpacing int LastUpdated time.Time Protocol string } // getPoolData retrieves pool data with caching func (s *MarketScanner) getPoolData(poolAddress string) (*CachedData, error) { // Check cache first cacheKey := fmt.Sprintf("pool_%s", poolAddress) s.cacheMutex.RLock() if data, exists := s.cache[cacheKey]; exists && time.Since(data.LastUpdated) < s.cacheTTL { s.cacheMutex.RUnlock() s.logger.Debug(fmt.Sprintf("Cache hit for pool %s", poolAddress)) return data, nil } s.cacheMutex.RUnlock() // Use singleflight to prevent duplicate requests result, err, _ := s.cacheGroup.Do(cacheKey, func() (interface{}, error) { return s.fetchPoolData(poolAddress) }) if err != nil { return nil, err } poolData := result.(*CachedData) // Update cache s.cacheMutex.Lock() s.cache[cacheKey] = poolData s.cacheMutex.Unlock() s.logger.Debug(fmt.Sprintf("Fetched and cached pool data for %s", poolAddress)) return poolData, nil } // fetchPoolData fetches pool data from the blockchain func (s *MarketScanner) fetchPoolData(poolAddress string) (*CachedData, error) { s.logger.Debug(fmt.Sprintf("Fetching pool data for %s", poolAddress)) // This is a simplified implementation // In practice, you would interact with the Ethereum blockchain to get real data address := common.HexToAddress(poolAddress) // For now, we'll return mock data pool := &CachedData{ Address: address, Token0: common.HexToAddress("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"), // USDC Token1: common.HexToAddress("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"), // WETH Fee: 3000, // 0.3% Liquidity: uint256.NewInt(1000000000000000000), // 1 ETH equivalent SqrtPriceX96: uint256.NewInt(2505414483750470000), // Mock sqrt price Tick: 200000, // Mock tick TickSpacing: 60, // Tick spacing for 0.3% fee Protocol: "UniswapV3", // Mock protocol LastUpdated: time.Now(), } s.logger.Debug(fmt.Sprintf("Fetched pool data for %s", poolAddress)) return pool, nil } // updatePoolData updates cached pool data func (s *MarketScanner) updatePoolData(event events.Event) { cacheKey := fmt.Sprintf("pool_%s", event.PoolAddress.Hex()) s.cacheMutex.Lock() defer s.cacheMutex.Unlock() // Update existing cache entry or create new one data := &CachedData{ Address: event.PoolAddress, Token0: event.Token0, Token1: event.Token1, Liquidity: event.Liquidity, SqrtPriceX96: event.SqrtPriceX96, Tick: event.Tick, Protocol: event.Protocol, // Add protocol information LastUpdated: time.Now(), } s.cache[cacheKey] = data s.logger.Debug(fmt.Sprintf("Updated cache for pool %s", event.PoolAddress.Hex())) } // cleanupCache removes expired cache entries func (s *MarketScanner) cleanupCache() { ticker := time.NewTicker(10 * time.Minute) defer ticker.Stop() for { select { case <-ticker.C: s.cacheMutex.Lock() for key, data := range s.cache { if time.Since(data.LastUpdated) > s.cacheTTL { delete(s.cache, key) s.logger.Debug(fmt.Sprintf("Removed expired cache entry: %s", key)) } } s.cacheMutex.Unlock() } } }