# Flash Loan Execution Architecture **Version:** 1.0 **Date:** October 28, 2025 **Status:** Design Document ## Executive Summary This document outlines the comprehensive architecture for flash loan-based arbitrage execution in the MEV bot. The system supports multiple flash loan providers (Aave, Balancer, Uniswap), implements robust safety checks, and handles the complete lifecycle from opportunity detection to profit realization. --- ## Table of Contents 1. [System Overview](#system-overview) 2. [Architecture Components](#architecture-components) 3. [Execution Flow](#execution-flow) 4. [Provider Implementations](#provider-implementations) 5. [Safety & Risk Management](#safety--risk-management) 6. [Transaction Signing & Dispatch](#transaction-signing--dispatch) 7. [Error Handling & Recovery](#error-handling--recovery) 8. [Monitoring & Analytics](#monitoring--analytics) --- ## System Overview ### Goals - **Capital Efficiency**: Execute arbitrage with zero upfront capital using flash loans - **Safety First**: Comprehensive validation and risk management at every step - **Multi-Provider Support**: Use the best flash loan provider for each opportunity - **Production Ready**: Handle real-world edge cases, errors, and race conditions ### High-Level Architecture ``` ┌─────────────────────────────────────────────────────────┐ │ Opportunity Detection Layer │ │ (Market Scanner, Price Feed, Arbitrage Detector) │ └──────────────────┬──────────────────────────────────────┘ │ Opportunities ▼ ┌─────────────────────────────────────────────────────────┐ │ Opportunity Validation & Ranking │ │ (Profit Calculator, Risk Assessor, Price Impact) │ └──────────────────┬──────────────────────────────────────┘ │ Validated Opportunities ▼ ┌─────────────────────────────────────────────────────────┐ │ Flash Loan Provider Selection │ │ (Aave, Balancer, Uniswap Flash Swap Selector) │ └──────────────────┬──────────────────────────────────────┘ │ Provider + Execution Plan ▼ ┌─────────────────────────────────────────────────────────┐ │ Transaction Builder & Signer │ │ (Calldata Encoder, Gas Estimator, Nonce Manager) │ └──────────────────┬──────────────────────────────────────┘ │ Signed Transaction ▼ ┌─────────────────────────────────────────────────────────┐ │ Transaction Dispatcher │ │ (Mempool Broadcaster, Flashbots Relay, Private RPC) │ └──────────────────┬──────────────────────────────────────┘ │ Transaction Hash ▼ ┌─────────────────────────────────────────────────────────┐ │ Execution Monitor & Confirmation │ │ (Receipt Waiter, Event Parser, Profit Calculator) │ └─────────────────────────────────────────────────────────┘ ``` --- ## Architecture Components ### 1. Flash Loan Provider Interface All flash loan providers implement this common interface: ```go type FlashLoanProvider interface { // Execute flash loan with given opportunity ExecuteFlashLoan(ctx context.Context, opp *ArbitrageOpportunity, config *ExecutionConfig) (*ExecutionResult, error) // Get maximum borrowable amount for token GetMaxLoanAmount(ctx context.Context, token common.Address) (*big.Int, error) // Calculate flash loan fee GetFee(ctx context.Context, amount *big.Int) (*big.Int, error) // Check if provider supports token SupportsToken(token common.Address) bool // Get provider name Name() string // Get provider priority (lower = higher priority) Priority() int } ``` ### 2. Flash Loan Orchestrator Central coordinator that: - Receives validated arbitrage opportunities - Selects optimal flash loan provider - Manages execution queue and priority - Handles concurrent execution limits - Tracks execution state and history ```go type FlashLoanOrchestrator struct { providers []FlashLoanProvider executionQueue *PriorityQueue executionLimiter *ConcurrencyLimiter stateTracker *ExecutionStateTracker metricsCollector *MetricsCollector } ``` ### 3. Transaction Builder Constructs and signs transactions for flash loan execution: ```go type TransactionBuilder struct { client *ethclient.Client keyManager *security.KeyManager nonceManager *arbitrage.NonceManager gasEstimator *arbitrum.L2GasEstimator // Build transaction calldata BuildCalldata(opp *ArbitrageOpportunity, provider FlashLoanProvider) ([]byte, error) // Estimate gas for transaction EstimateGas(tx *types.Transaction) (uint64, error) // Sign transaction SignTransaction(tx *types.Transaction) (*types.Transaction, error) } ``` ### 4. Transaction Dispatcher Sends signed transactions to the network: ```go type TransactionDispatcher struct { client *ethclient.Client logger *logger.Logger // Dispatch modes useFlashbots bool flashbotsRelay string usePrivateRPC bool privateRPCURL string // Dispatch transaction Dispatch(ctx context.Context, tx *types.Transaction, mode DispatchMode) (common.Hash, error) // Wait for confirmation WaitForConfirmation(ctx context.Context, txHash common.Hash, confirmations uint64) (*types.Receipt, error) } ``` ### 5. Execution Monitor Monitors transaction execution and parses results: ```go type ExecutionMonitor struct { client *ethclient.Client eventParser *events.Parser // Monitor execution MonitorExecution(ctx context.Context, txHash common.Hash) (*ExecutionResult, error) // Parse profit from receipt ParseProfit(receipt *types.Receipt) (*big.Int, error) // Handle reverts ParseRevertReason(receipt *types.Receipt) string } ``` --- ## Execution Flow ### Step-by-Step Execution Process #### Phase 1: Pre-Execution Validation (500ms max) ``` 1. Opportunity Received ├─ Validate opportunity structure ├─ Check price impact thresholds ├─ Verify tokens are not blacklisted └─ Calculate expected profit 2. Provider Selection ├─ Check token support across providers ├─ Calculate fees for each provider ├─ Select provider with lowest cost └─ Verify provider has sufficient liquidity 3. Risk Assessment ├─ Check current gas prices ├─ Validate slippage limits ├─ Verify position size limits └─ Check daily volume limits 4. Final Profitability Check ├─ Net Profit = Gross Profit - Gas Costs - Flash Loan Fees ├─ Reject if Net Profit < MinProfitThreshold └─ Continue if profitable ``` #### Phase 2: Transaction Construction (200ms max) ``` 1. Build Flash Loan Calldata ├─ Encode arbitrage path ├─ Calculate minimum output amounts ├─ Set recipient address └─ Add safety parameters 2. Estimate Gas ├─ Call estimateGas on RPC ├─ Apply safety multiplier (1.2x) ├─ Calculate gas cost in ETH └─ Re-validate profitability with gas cost 3. Get Nonce ├─ Query pending nonce from network ├─ Check nonce manager for next available ├─ Handle nonce collisions └─ Reserve nonce for this transaction 4. Build Transaction Object ├─ Set to: Flash Loan Provider address ├─ Set data: Encoded calldata ├─ Set gas: Estimated gas limit ├─ Set gasPrice: Current gas price + priority fee ├─ Set nonce: Reserved nonce └─ Set value: 0 (flash loans don't require upfront payment) 5. Sign Transaction ├─ Load private key from KeyManager ├─ Sign with EIP-155 (ChainID: 42161 for Arbitrum) ├─ Verify signature └─ Serialize to RLP ``` #### Phase 3: Transaction Dispatch (1-2s max) ``` 1. Choose Dispatch Method ├─ If MEV Protection Enabled → Use Flashbots/Private RPC ├─ If High Competition → Use Private RPC └─ Default → Public Mempool 2. Send Transaction ├─ Dispatch via chosen method ├─ Receive transaction hash ├─ Log submission └─ Start monitoring 3. Handle Errors ├─ If "nonce too low" → Get new nonce and retry ├─ If "gas too low" → Increase gas and retry ├─ If "insufficient funds" → Abort (critical error) ├─ If "already known" → Wait for existing tx └─ If network error → Retry with exponential backoff ``` #### Phase 4: Execution Monitoring (5-30s) ``` 1. Wait for Inclusion ├─ Poll for transaction receipt ├─ Timeout after 30 seconds ├─ Check if transaction replaced └─ Handle dropped transactions 2. Verify Execution ├─ Check receipt status (1 = success, 0 = revert) ├─ If reverted → Parse revert reason ├─ If succeeded → Continue └─ If dropped → Handle re-submission 3. Parse Events ├─ Extract ArbitrageExecuted event ├─ Parse actual profit ├─ Parse gas used └─ Calculate ROI 4. Update State ├─ Mark nonce as confirmed ├─ Update profit tracking ├─ Log execution result └─ Emit metrics ``` --- ## Provider Implementations ### 1. Aave Flash Loan Provider **Advantages:** - Large liquidity pools - Supports many tokens - Fixed fee (0.09%) - Very reliable **Implementation:** ```go func (a *AaveFlashLoanProvider) ExecuteFlashLoan( ctx context.Context, opp *ArbitrageOpportunity, config *ExecutionConfig, ) (*ExecutionResult, error) { // 1. Build flash loan parameters assets := []common.Address{opp.TokenIn} amounts := []*big.Int{opp.AmountIn} modes := []*big.Int{big.NewInt(0)} // 0 = no debt, must repay in same transaction // 2. Encode arbitrage path as userData userData := encodeArbitragePath(opp) // 3. Build flashLoan() calldata aaveABI := getAavePoolABI() calldata, err := aaveABI.Pack( "flashLoan", a.receiverContract, // Receiver contract assets, // Assets to borrow amounts, // Amounts to borrow modes, // Interest rate modes (0 for none) a.onBehalfOf, // On behalf of address userData, // Encoded arbitrage data uint16(0), // Referral code ) // 4. Build and sign transaction tx := buildTransaction(a.poolAddress, calldata, config) signedTx, err := signTransaction(tx, keyManager) // 5. Dispatch transaction txHash, err := dispatcher.Dispatch(ctx, signedTx, DispatchModeMEV) // 6. Monitor execution receipt, err := monitor.WaitForConfirmation(ctx, txHash, 1) // 7. Parse result result := parseExecutionResult(receipt, opp) return result, nil } ``` ### 2. Balancer Flash Loan Provider **Advantages:** - Zero fees (!) - Large liquidity - Multi-token flash loans supported **Implementation:** ```go func (b *BalancerFlashLoanProvider) ExecuteFlashLoan( ctx context.Context, opp *ArbitrageOpportunity, config *ExecutionConfig, ) (*ExecutionResult, error) { // 1. Build flash loan parameters tokens := []common.Address{opp.TokenIn} amounts := []*big.Int{opp.AmountIn} // 2. Encode arbitrage path userData := encodeArbitragePath(opp) // 3. Build flashLoan() calldata for Balancer Vault vaultABI := getBalancerVaultABI() calldata, err := vaultABI.Pack( "flashLoan", b.receiverContract, // IFlashLoanReceiver tokens, // Tokens to borrow amounts, // Amounts to borrow userData, // Encoded arbitrage path ) // 4-7. Same as Aave (build, sign, dispatch, monitor) // ... } ``` ### 3. Uniswap Flash Swap Provider **Advantages:** - Available on all token pairs - No separate flash loan contract needed - Fee is same as swap fee (0.3%) **Implementation:** ```go func (u *UniswapFlashSwapProvider) ExecuteFlashLoan( ctx context.Context, opp *ArbitrageOpportunity, config *ExecutionConfig, ) (*ExecutionResult, error) { // 1. Find optimal pool for flash swap pool := findBestPoolForFlashSwap(opp.TokenIn, opp.AmountIn) // 2. Determine amount0Out and amount1Out amount0Out, amount1Out := calculateSwapAmounts(pool, opp) // 3. Encode arbitrage path userData := encodeArbitragePath(opp) // 4. Build swap() calldata for Uniswap V2 pair pairABI := getUniswapV2PairABI() calldata, err := pairABI.Pack( "swap", amount0Out, // Amount of token0 to receive amount1Out, // Amount of token1 to receive u.receiverContract, // Recipient (our contract) userData, // Triggers callback ) // 5-8. Same as others // ... } ``` --- ## Safety & Risk Management ### Pre-Execution Checks ```go type SafetyValidator struct { priceImpactValidator *validation.PriceImpactValidator blacklistChecker *security.BlacklistChecker positionLimiter *risk.PositionLimiter } func (sv *SafetyValidator) ValidateExecution(opp *ArbitrageOpportunity) error { // 1. Price Impact if result := sv.priceImpactValidator.ValidatePriceImpact(opp.PriceImpact); !result.IsAcceptable { return fmt.Errorf("price impact too high: %s", result.Recommendation) } // 2. Blacklist Check if sv.blacklistChecker.IsBlacklisted(opp.TokenIn) || sv.blacklistChecker.IsBlacklisted(opp.TokenOut) { return fmt.Errorf("token is blacklisted") } // 3. Position Size if opp.AmountIn.Cmp(sv.positionLimiter.MaxPositionSize) > 0 { return fmt.Errorf("position size exceeds limit") } // 4. Slippage Protection if opp.Slippage > sv.maxSlippage { return fmt.Errorf("slippage %f%% exceeds max %f%%", opp.Slippage, sv.maxSlippage) } return nil } ``` ### Circuit Breakers ```go type CircuitBreaker struct { consecutiveFailures int maxFailures int resetTimeout time.Duration lastFailure time.Time state CircuitState } func (cb *CircuitBreaker) ShouldExecute() bool { if cb.state == CircuitStateOpen { // Check if we should try half-open if time.Since(cb.lastFailure) > cb.resetTimeout { cb.state = CircuitStateHalfOpen return true } return false } return true } func (cb *CircuitBreaker) RecordSuccess() { cb.consecutiveFailures = 0 cb.state = CircuitStateClosed } func (cb *CircuitBreaker) RecordFailure() { cb.consecutiveFailures++ cb.lastFailure = time.Now() if cb.consecutiveFailures >= cb.maxFailures { cb.state = CircuitStateOpen // Trigger alerts } } ``` --- ## Transaction Signing & Dispatch ### Transaction Signing Flow ```go func SignFlashLoanTransaction( opp *ArbitrageOpportunity, provider FlashLoanProvider, keyManager *security.KeyManager, nonceManager *NonceManager, gasEstimator *GasEstimator, ) (*types.Transaction, error) { // 1. Build calldata calldata, err := provider.BuildCalldata(opp) if err != nil { return nil, fmt.Errorf("failed to build calldata: %w", err) } // 2. Estimate gas gasLimit, err := gasEstimator.EstimateGas(provider.Address(), calldata) if err != nil { return nil, fmt.Errorf("failed to estimate gas: %w", err) } // 3. Get gas price gasPrice, priorityFee, err := gasEstimator.GetGasPrice(context.Background()) if err != nil { return nil, fmt.Errorf("failed to get gas price: %w", err) } // 4. Get nonce nonce, err := nonceManager.GetNextNonce(context.Background()) if err != nil { return nil, fmt.Errorf("failed to get nonce: %w", err) } // 5. Build transaction tx := types.NewTx(&types.DynamicFeeTx{ ChainID: big.NewInt(42161), // Arbitrum Nonce: nonce, GasTipCap: priorityFee, GasFeeCap: gasPrice, Gas: gasLimit, To: &provider.Address(), Value: big.NewInt(0), Data: calldata, }) // 6. Sign transaction privateKey, err := keyManager.GetPrivateKey() if err != nil { return nil, fmt.Errorf("failed to get private key: %w", err) } signer := types.LatestSignerForChainID(big.NewInt(42161)) signedTx, err := types.SignTx(tx, signer, privateKey) if err != nil { return nil, fmt.Errorf("failed to sign transaction: %w", err) } return signedTx, nil } ``` ### Dispatch Strategies **1. Public Mempool (Default)** ```go func (d *TransactionDispatcher) DispatchPublic(ctx context.Context, tx *types.Transaction) (common.Hash, error) { err := d.client.SendTransaction(ctx, tx) if err != nil { return common.Hash{}, err } return tx.Hash(), nil } ``` **2. Flashbots Relay (MEV Protection)** ```go func (d *TransactionDispatcher) DispatchFlashbots(ctx context.Context, tx *types.Transaction) (common.Hash, error) { bundle := types.MevBundle{ Txs: types.Transactions{tx}, BlockNumber: currentBlock + 1, } bundleHash, err := d.flashbotsClient.SendBundle(ctx, bundle) if err != nil { return common.Hash{}, err } return bundleHash, nil } ``` **3. Private RPC (Low Latency)** ```go func (d *TransactionDispatcher) DispatchPrivate(ctx context.Context, tx *types.Transaction) (common.Hash, error) { err := d.privateClient.SendTransaction(ctx, tx) if err != nil { return common.Hash{}, err } return tx.Hash(), nil } ``` --- ## Error Handling & Recovery ### Common Errors and Responses | Error | Cause | Response | |-------|-------|----------| | `nonce too low` | Transaction already mined | Get new nonce, retry | | `nonce too high` | Nonce gap exists | Reset nonce manager, retry | | `insufficient funds` | Not enough ETH for gas | Abort, alert operator | | `gas price too low` | Network congestion | Increase gas price, retry | | `execution reverted` | Smart contract revert | Parse reason, log, abort | | `transaction underpriced` | Gas price below network minimum | Get current gas price, retry | | `already known` | Duplicate transaction | Wait for confirmation | | `replacement transaction underpriced` | Replacement needs higher gas | Increase gas by 10%, retry | ### Retry Strategy ```go func (executor *FlashLoanExecutor) executeWithRetry( ctx context.Context, opp *ArbitrageOpportunity, ) (*ExecutionResult, error) { var lastErr error for attempt := 0; attempt < executor.config.RetryAttempts; attempt++ { result, err := executor.attemptExecution(ctx, opp) if err == nil { return result, nil } lastErr = err // Check if error is retryable if !isRetryable(err) { return nil, fmt.Errorf("non-retryable error: %w", err) } // Handle specific errors if strings.Contains(err.Error(), "nonce too low") { executor.nonceManager.Reset() } else if strings.Contains(err.Error(), "gas price too low") { executor.increaseGasPrice() } // Exponential backoff backoff := time.Duration(stdmath.Pow(2, float64(attempt))) * executor.config.RetryDelay time.Sleep(backoff) } return nil, fmt.Errorf("max retries exceeded: %w", lastErr) } ``` --- ## Monitoring & Analytics ### Metrics to Track 1. **Execution Metrics** - Total executions (successful / failed / reverted) - Average execution time - Gas used per execution - Nonce collision rate 2. **Profit Metrics** - Total profit (gross / net) - Average profit per execution - Profit by provider - ROI by token pair 3. **Performance Metrics** - Latency from opportunity detection to execution - Transaction confirmation time - Success rate by provider - Revert rate by reason 4. **Risk Metrics** - Largest position size executed - Highest price impact accepted - Slippage encountered - Failed transactions by reason ### Logging Format ```go type ExecutionLog struct { Timestamp time.Time OpportunityID string Provider string TokenIn string TokenOut string AmountIn string EstimatedProfit string ActualProfit string GasUsed uint64 GasCost string TransactionHash string Status string Error string ExecutionTime time.Duration } ``` --- ## Implementation Checklist ### Phase 1: Core Infrastructure (Week 1) - [ ] Implement TransactionBuilder - [ ] Implement NonceManager improvements - [ ] Implement TransactionDispatcher - [ ] Add comprehensive error handling - [ ] Create execution state tracking ### Phase 2: Provider Implementation (Week 2) - [ ] Complete Balancer flash loan provider - [ ] Complete Aave flash loan provider - [ ] Complete Uniswap flash swap provider - [ ] Add provider selection logic - [ ] Implement fee comparison ### Phase 3: Safety & Testing (Week 3) - [ ] Implement circuit breakers - [ ] Add position size limits - [ ] Create simulation/dry-run mode - [ ] Comprehensive unit tests - [ ] Integration tests with testnet ### Phase 4: Production Deployment (Week 4) - [ ] Deploy flash loan receiver contracts - [ ] Configure private RPC/Flashbots - [ ] Set up monitoring dashboards - [ ] Production smoke tests - [ ] Gradual rollout with small positions --- ## Security Considerations ### Private Key Management 1. **Never log private keys** 2. **Use hardware security modules (HSM) in production** 3. **Implement key rotation** 4. **Encrypt keys at rest** 5. **Limit key access to execution process only** ### Smart Contract Security 1. **Audit all receiver contracts before deployment** 2. **Use access control (Ownable)** 3. **Implement reentrancy guards** 4. **Set maximum borrow limits** 5. **Add emergency pause functionality** ### Transaction Security 1. **Validate all inputs before signing** 2. **Use EIP-155 replay protection** 3. **Verify transaction before dispatch** 4. **Monitor for front-running** 5. **Use private mempools when needed** --- ## Conclusion This flash loan execution architecture provides a robust, production-ready system for executing MEV arbitrage opportunities. Key features include: - **Multi-provider support** for optimal cost and availability - **Comprehensive safety checks** at every stage - **Robust error handling** with intelligent retry logic - **Detailed monitoring** for operations and debugging - **Production hardened** design for real-world usage The modular design allows for easy extension, testing, and maintenance while ensuring safety and profitability. --- **Next Steps**: Proceed with implementation following the phased checklist above.