Files
mev-beta/orig/.qwen/commands/optimize-math.toml
Administrator c54c569f30 refactor: move all remaining files to orig/ directory
Completed clean root directory structure:
- Root now contains only: .git, .env, docs/, orig/
- Moved all remaining files and directories to orig/:
  - Config files (.claude, .dockerignore, .drone.yml, etc.)
  - All .env variants (except active .env)
  - Git config (.gitconfig, .github, .gitignore, etc.)
  - Tool configs (.golangci.yml, .revive.toml, etc.)
  - Documentation (*.md files, @prompts)
  - Build files (Dockerfiles, Makefile, go.mod, go.sum)
  - Docker compose files
  - All source directories (scripts, tests, tools, etc.)
  - Runtime directories (logs, monitoring, reports)
  - Dependency files (node_modules, lib, cache)
  - Special files (--delete)

- Removed empty runtime directories (bin/, data/)

V2 structure is now clean:
- docs/planning/ - V2 planning documents
- orig/ - Complete V1 codebase preserved
- .env - Active environment config (not in git)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:53:05 +01:00

76 lines
2.8 KiB
TOML

name = "optimize-math"
description = "Optimize Mathematical Performance - Optimize the performance of mathematical functions in the MEV bot"
category = "optimization"
parameters = [
{ name = "function", type = "string", description = "The mathematical function to optimize" }
]
[command]
shell = '''
echo "# Optimize Mathematical Performance
Optimize the performance of the following mathematical function in the MEV bot: ${function}
## Performance Optimization Strategy:
### 1. **Profiling and Measurement**
```bash
# CPU profiling for mathematical functions
go tool pprof http://localhost:9090/debug/pprof/profile?seconds=30
# Memory profiling for mathematical calculations
go tool pprof http://localhost:9090/debug/pprof/heap
# Benchmark testing for mathematical functions
go test -bench=. -benchmem ./pkg/uniswap/...
```
### 2. **Optimization Areas**
#### **Precision Handling Optimization**
- Uint256 arithmetic optimization
- Object pooling for frequent calculations
- Minimize memory allocations in hot paths (Target: 20-33% reduction like in successful implementations)
- Efficient conversion between data types
#### **Algorithm Optimization**
- Mathematical formula simplification
- Lookup table implementation for repeated calculations
- Caching strategies for expensive computations (Reference: SqrtPriceX96ToPriceCached achieved 24% performance improvement)
- Parallel processing opportunities
#### **Memory Optimization**
- Pre-allocation of slices and buffers
- Object pooling for mathematical objects
- Minimize garbage collection pressure (Target: 20-33% reduction like in successful implementations)
- Efficient data structure selection
### 3. **MEV Bot Specific Optimizations**
#### **Uniswap V3 Pricing Functions**
- sqrtPriceX96 to price conversion optimization
- Tick calculation performance improvements
- Liquidity-based calculation efficiency
- Price impact computation optimization
#### **Arbitrage Calculations**
- Profit calculation optimization
- Cross-pool comparison performance
- Gas estimation accuracy and speed
- Multi-hop arbitrage efficiency
## Implementation Guidelines:
- Measure before optimizing (baseline metrics)
- Focus on bottlenecks identified through profiling
- Maintain mathematical precision while improving performance
- Add performance tests for regressions
- Document optimization strategies and results
- Consider caching strategies for expensive computations (Reference: Precomputing expensive constants like `2^96`, `2^192` achieved 19-24% performance improvements)
## Deliverables:
- Performance benchmark results (before/after) - Reference: SqrtPriceX96ToPriceCached: 1406 ns/op → 1060 ns/op (24% faster)
- Optimized code with maintained precision
- Performance monitoring enhancements
- Optimization documentation
- Regression test suite"
'''