Restructured project for V2 refactor: **Structure Changes:** - Moved all V1 code to orig/ folder (preserved with git mv) - Created docs/planning/ directory - Added orig/README_V1.md explaining V1 preservation **Planning Documents:** - 00_V2_MASTER_PLAN.md: Complete architecture overview - Executive summary of critical V1 issues - High-level component architecture diagrams - 5-phase implementation roadmap - Success metrics and risk mitigation - 07_TASK_BREAKDOWN.md: Atomic task breakdown - 99+ hours of detailed tasks - Every task < 2 hours (atomic) - Clear dependencies and success criteria - Organized by implementation phase **V2 Key Improvements:** - Per-exchange parsers (factory pattern) - Multi-layer strict validation - Multi-index pool cache - Background validation pipeline - Comprehensive observability **Critical Issues Addressed:** - Zero address tokens (strict validation + cache enrichment) - Parsing accuracy (protocol-specific parsers) - No audit trail (background validation channel) - Inefficient lookups (multi-index cache) - Stats disconnection (event-driven metrics) Next Steps: 1. Review planning documents 2. Begin Phase 1: Foundation (P1-001 through P1-010) 3. Implement parsers in Phase 2 4. Build cache system in Phase 3 5. Add validation pipeline in Phase 4 6. Migrate and test in Phase 5 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
68 lines
1.6 KiB
Go
68 lines
1.6 KiB
Go
package arbitrum
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"encoding/hex"
|
|
"testing"
|
|
|
|
"github.com/fraktal/mev-beta/pkg/calldata"
|
|
)
|
|
|
|
// FuzzABIDecoder ensures the swap decoder tolerates arbitrary calldata without panicking.
|
|
func FuzzABIDecoder(f *testing.F) {
|
|
decoder, err := NewABIDecoder()
|
|
if err != nil {
|
|
f.Fatalf("failed to create ABI decoder: %v", err)
|
|
}
|
|
|
|
// Seed with known selectors (Uniswap V2/V3 multicall patterns)
|
|
f.Add([]byte{0xa9, 0x05, 0x9c, 0xbb})
|
|
f.Add([]byte{0x41, 0x4b, 0xf3, 0x89})
|
|
f.Add([]byte{0x18, 0xcb, 0xaf, 0xe5})
|
|
|
|
// Seed with random data of reasonable length
|
|
random := make([]byte, 64)
|
|
_, _ = rand.Read(random)
|
|
f.Add(random)
|
|
|
|
f.Fuzz(func(t *testing.T, data []byte) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
t.Fatalf("DecodeSwapTransaction panicked for %x: %v", data, r)
|
|
}
|
|
}()
|
|
|
|
if len(data) == 0 {
|
|
data = []byte{0x00}
|
|
}
|
|
|
|
hexPayload := "0x" + hex.EncodeToString(data)
|
|
if _, err := decoder.DecodeSwapTransaction("generic", hexPayload); err != nil {
|
|
t.Logf("decoder returned expected error: %v", err)
|
|
}
|
|
})
|
|
}
|
|
|
|
// FuzzMulticallExtractor validates robustness of multicall token extraction.
|
|
func FuzzMulticallExtractor(f *testing.F) {
|
|
seed := make([]byte, 96)
|
|
copy(seed[:4], []byte{0xac, 0x96, 0x50, 0xd8})
|
|
f.Add(seed)
|
|
|
|
random := make([]byte, 128)
|
|
_, _ = rand.Read(random)
|
|
f.Add(random)
|
|
|
|
f.Fuzz(func(t *testing.T, params []byte) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
t.Fatalf("ExtractTokensFromMulticall panicked for %x: %v", params, r)
|
|
}
|
|
}()
|
|
|
|
if _, err := calldata.ExtractTokensFromMulticall(params); err != nil {
|
|
t.Logf("multicall extraction reported error: %v", err)
|
|
}
|
|
})
|
|
}
|