Files
mev-beta/orig/pkg/arbitrum/abi_fuzz_test.go
Administrator 803de231ba feat: create v2-prep branch with comprehensive planning
Restructured project for V2 refactor:

**Structure Changes:**
- Moved all V1 code to orig/ folder (preserved with git mv)
- Created docs/planning/ directory
- Added orig/README_V1.md explaining V1 preservation

**Planning Documents:**
- 00_V2_MASTER_PLAN.md: Complete architecture overview
  - Executive summary of critical V1 issues
  - High-level component architecture diagrams
  - 5-phase implementation roadmap
  - Success metrics and risk mitigation

- 07_TASK_BREAKDOWN.md: Atomic task breakdown
  - 99+ hours of detailed tasks
  - Every task < 2 hours (atomic)
  - Clear dependencies and success criteria
  - Organized by implementation phase

**V2 Key Improvements:**
- Per-exchange parsers (factory pattern)
- Multi-layer strict validation
- Multi-index pool cache
- Background validation pipeline
- Comprehensive observability

**Critical Issues Addressed:**
- Zero address tokens (strict validation + cache enrichment)
- Parsing accuracy (protocol-specific parsers)
- No audit trail (background validation channel)
- Inefficient lookups (multi-index cache)
- Stats disconnection (event-driven metrics)

Next Steps:
1. Review planning documents
2. Begin Phase 1: Foundation (P1-001 through P1-010)
3. Implement parsers in Phase 2
4. Build cache system in Phase 3
5. Add validation pipeline in Phase 4
6. Migrate and test in Phase 5

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:14:26 +01:00

68 lines
1.6 KiB
Go

package arbitrum
import (
"crypto/rand"
"encoding/hex"
"testing"
"github.com/fraktal/mev-beta/pkg/calldata"
)
// FuzzABIDecoder ensures the swap decoder tolerates arbitrary calldata without panicking.
func FuzzABIDecoder(f *testing.F) {
decoder, err := NewABIDecoder()
if err != nil {
f.Fatalf("failed to create ABI decoder: %v", err)
}
// Seed with known selectors (Uniswap V2/V3 multicall patterns)
f.Add([]byte{0xa9, 0x05, 0x9c, 0xbb})
f.Add([]byte{0x41, 0x4b, 0xf3, 0x89})
f.Add([]byte{0x18, 0xcb, 0xaf, 0xe5})
// Seed with random data of reasonable length
random := make([]byte, 64)
_, _ = rand.Read(random)
f.Add(random)
f.Fuzz(func(t *testing.T, data []byte) {
defer func() {
if r := recover(); r != nil {
t.Fatalf("DecodeSwapTransaction panicked for %x: %v", data, r)
}
}()
if len(data) == 0 {
data = []byte{0x00}
}
hexPayload := "0x" + hex.EncodeToString(data)
if _, err := decoder.DecodeSwapTransaction("generic", hexPayload); err != nil {
t.Logf("decoder returned expected error: %v", err)
}
})
}
// FuzzMulticallExtractor validates robustness of multicall token extraction.
func FuzzMulticallExtractor(f *testing.F) {
seed := make([]byte, 96)
copy(seed[:4], []byte{0xac, 0x96, 0x50, 0xd8})
f.Add(seed)
random := make([]byte, 128)
_, _ = rand.Read(random)
f.Add(random)
f.Fuzz(func(t *testing.T, params []byte) {
defer func() {
if r := recover(); r != nil {
t.Fatalf("ExtractTokensFromMulticall panicked for %x: %v", params, r)
}
}()
if _, err := calldata.ExtractTokensFromMulticall(params); err != nil {
t.Logf("multicall extraction reported error: %v", err)
}
})
}