Files
mev-beta/orig/pkg/math/cached_test.go
Administrator 803de231ba feat: create v2-prep branch with comprehensive planning
Restructured project for V2 refactor:

**Structure Changes:**
- Moved all V1 code to orig/ folder (preserved with git mv)
- Created docs/planning/ directory
- Added orig/README_V1.md explaining V1 preservation

**Planning Documents:**
- 00_V2_MASTER_PLAN.md: Complete architecture overview
  - Executive summary of critical V1 issues
  - High-level component architecture diagrams
  - 5-phase implementation roadmap
  - Success metrics and risk mitigation

- 07_TASK_BREAKDOWN.md: Atomic task breakdown
  - 99+ hours of detailed tasks
  - Every task < 2 hours (atomic)
  - Clear dependencies and success criteria
  - Organized by implementation phase

**V2 Key Improvements:**
- Per-exchange parsers (factory pattern)
- Multi-layer strict validation
- Multi-index pool cache
- Background validation pipeline
- Comprehensive observability

**Critical Issues Addressed:**
- Zero address tokens (strict validation + cache enrichment)
- Parsing accuracy (protocol-specific parsers)
- No audit trail (background validation channel)
- Inefficient lookups (multi-index cache)
- Stats disconnection (event-driven metrics)

Next Steps:
1. Review planning documents
2. Begin Phase 1: Foundation (P1-001 through P1-010)
3. Implement parsers in Phase 2
4. Build cache system in Phase 3
5. Add validation pipeline in Phase 4
6. Migrate and test in Phase 5

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:14:26 +01:00

128 lines
4.8 KiB
Go

package math
import (
"math/big"
"testing"
"github.com/holiman/uint256"
"github.com/stretchr/testify/assert"
)
// Test that cached functions produce the same results as original implementations
func TestCachedFunctionAccuracy(t *testing.T) {
// Test SqrtPriceX96ToPrice functions
t.Run("SqrtPriceX96ToPrice", func(t *testing.T) {
// Use a typical sqrtPriceX96 value (represents price of ~2000 USDC/ETH)
sqrtPriceX96 := new(big.Int).SetBytes([]byte{0x06, 0x40, 0x84, 0x4A, 0x0E, 0x81, 0x4F, 0x96, 0x19, 0xC1, 0x9C, 0x08})
// Original calculation
sqrtPriceFloat := new(big.Float).SetInt(sqrtPriceX96)
originalPrice := new(big.Float).Mul(sqrtPriceFloat, sqrtPriceFloat)
q192 := new(big.Int).Exp(big.NewInt(2), big.NewInt(192), nil)
q192Float := new(big.Float).SetInt(q192)
originalPrice.Quo(originalPrice, q192Float)
// Cached calculation
cachedPrice := SqrtPriceX96ToPriceCached(sqrtPriceX96)
// Compare results (should be identical)
assert.Equal(t, originalPrice.String(), cachedPrice.String(), "Cached and original SqrtPriceX96ToPrice should produce identical results")
})
// Test PriceToSqrtPriceX96 functions
t.Run("PriceToSqrtPriceX96", func(t *testing.T) {
// Use a typical price value (represents price of ~2000 USDC/ETH)
price := new(big.Float).SetFloat64(2000.0)
// Original calculation
q192 := new(big.Int).Exp(big.NewInt(2), big.NewInt(192), nil)
q192Float := new(big.Float).SetInt(q192)
result := new(big.Float).Mul(price, q192Float)
result.Sqrt(result)
expectedSqrtPriceX96 := new(big.Int)
result.Int(expectedSqrtPriceX96)
// Cached calculation
actualSqrtPriceX96 := PriceToSqrtPriceX96Cached(price)
// Compare results (should be identical)
assert.Equal(t, expectedSqrtPriceX96.String(), actualSqrtPriceX96.String(), "Cached and original PriceToSqrtPriceX96 should produce identical results")
})
// Test optimized functions with uint256
t.Run("SqrtPriceX96ToPriceOptimized", func(t *testing.T) {
// Use a typical sqrtPriceX96 value
sqrtPriceX96Big := new(big.Int).SetBytes([]byte{0x06, 0x40, 0x84, 0x4A, 0x0E, 0x81, 0x4F, 0x96, 0x19, 0xC1, 0x9C, 0x08})
sqrtPriceX96 := uint256.MustFromBig(sqrtPriceX96Big)
// Cached calculation
cachedResult := SqrtPriceX96ToPriceCached(sqrtPriceX96Big)
// Optimized calculation
optimizedResult := SqrtPriceX96ToPriceOptimized(sqrtPriceX96)
// Compare results (should be identical)
assert.Equal(t, cachedResult.String(), optimizedResult.String(), "Optimized and cached SqrtPriceX96ToPrice should produce identical results")
})
// Test optimized functions with uint256
t.Run("PriceToSqrtPriceX96Optimized", func(t *testing.T) {
// Use a typical price value
price := new(big.Float).SetFloat64(2000.0)
// Cached calculation
cachedResult := PriceToSqrtPriceX96Cached(price)
// Optimized calculation
optimizedResult := PriceToSqrtPriceX96Optimized(price)
// Compare results (should be identical)
assert.Equal(t, cachedResult.String(), optimizedResult.ToBig().String(), "Optimized and cached PriceToSqrtPriceX96 should produce identical results")
})
}
// Test that cached constants are working correctly
func TestCachedConstants(t *testing.T) {
// Test that Q192 is correctly calculated
expectedQ192 := new(big.Int).Exp(big.NewInt(2), big.NewInt(192), nil)
actualQ192 := GetCachedQ192()
assert.Equal(t, expectedQ192.String(), actualQ192.String(), "Cached Q192 should equal 2^192")
// Test that Q96 is correctly calculated
expectedQ96 := new(big.Int).Exp(big.NewInt(2), big.NewInt(96), nil)
actualQ96 := GetCachedQ96()
assert.Equal(t, expectedQ96.String(), actualQ96.String(), "Cached Q96 should equal 2^96")
// Test that Q384 is correctly calculated
expectedQ384 := new(big.Int).Exp(big.NewInt(2), big.NewInt(384), nil)
actualQ384 := GetCachedQ384()
assert.Equal(t, expectedQ384.String(), actualQ384.String(), "Cached Q384 should equal 2^384")
}
// Test edge cases
func TestEdgeCases(t *testing.T) {
// Test with zero values
zero := big.NewInt(0)
zeroFloat := new(big.Float).SetInt64(0)
// SqrtPriceX96ToPrice with zero
result := SqrtPriceX96ToPriceCached(zero)
assert.Equal(t, "0", result.String(), "SqrtPriceX96ToPriceCached with zero should return zero")
// PriceToSqrtPriceX96 with zero
result2 := PriceToSqrtPriceX96Cached(zeroFloat)
assert.Equal(t, "0", result2.String(), "PriceToSqrtPriceX96Cached with zero should return zero")
// Test with small values
one := big.NewInt(1)
oneFloat := new(big.Float).SetInt64(1)
// SqrtPriceX96ToPrice with one
result3 := SqrtPriceX96ToPriceCached(one)
assert.NotEmpty(t, result3.String(), "SqrtPriceX96ToPriceCached with one should return a value")
// PriceToSqrtPriceX96 with one
result4 := PriceToSqrtPriceX96Cached(oneFloat)
assert.NotEmpty(t, result4.String(), "PriceToSqrtPriceX96Cached with one should return a value")
}