Files
mev-beta/orig/pkg/pools/create2.go
Administrator 803de231ba feat: create v2-prep branch with comprehensive planning
Restructured project for V2 refactor:

**Structure Changes:**
- Moved all V1 code to orig/ folder (preserved with git mv)
- Created docs/planning/ directory
- Added orig/README_V1.md explaining V1 preservation

**Planning Documents:**
- 00_V2_MASTER_PLAN.md: Complete architecture overview
  - Executive summary of critical V1 issues
  - High-level component architecture diagrams
  - 5-phase implementation roadmap
  - Success metrics and risk mitigation

- 07_TASK_BREAKDOWN.md: Atomic task breakdown
  - 99+ hours of detailed tasks
  - Every task < 2 hours (atomic)
  - Clear dependencies and success criteria
  - Organized by implementation phase

**V2 Key Improvements:**
- Per-exchange parsers (factory pattern)
- Multi-layer strict validation
- Multi-index pool cache
- Background validation pipeline
- Comprehensive observability

**Critical Issues Addressed:**
- Zero address tokens (strict validation + cache enrichment)
- Parsing accuracy (protocol-specific parsers)
- No audit trail (background validation channel)
- Inefficient lookups (multi-index cache)
- Stats disconnection (event-driven metrics)

Next Steps:
1. Review planning documents
2. Begin Phase 1: Foundation (P1-001 through P1-010)
3. Implement parsers in Phase 2
4. Build cache system in Phase 3
5. Add validation pipeline in Phase 4
6. Migrate and test in Phase 5

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:14:26 +01:00

587 lines
21 KiB
Go

package pools
import (
"context"
"fmt"
"math/big"
"sort"
"strings"
"time"
"github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/accounts/abi"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethclient"
"github.com/fraktal/mev-beta/internal/logger"
)
// CREATE2Calculator handles CREATE2 address calculations for various DEX factories
type CREATE2Calculator struct {
logger *logger.Logger
factories map[string]*FactoryConfig
ethClient *ethclient.Client
curveCache map[string]common.Address // Cache for Curve pool addresses
}
// FactoryConfig contains the configuration for a DEX factory
type FactoryConfig struct {
Name string // Factory name (e.g., "uniswap_v3", "sushiswap")
Address common.Address // Factory contract address
InitCodeHash common.Hash // Init code hash for CREATE2 calculation
FeeStructure FeeStructure // How fees are encoded
SortTokens bool // Whether tokens should be sorted
}
// FeeStructure defines how fees are handled in address calculation
type FeeStructure struct {
HasFee bool // Whether fee is part of salt
FeePositions []int // Byte positions where fee is encoded
DefaultFees []uint32 // Default fee tiers
}
// PoolIdentifier uniquely identifies a pool
type PoolIdentifier struct {
Factory string // Factory name
Token0 common.Address // First token (lower address if sorted)
Token1 common.Address // Second token (higher address if sorted)
Fee uint32 // Fee tier
PoolAddr common.Address // Calculated pool address
}
// NewCREATE2Calculator creates a new CREATE2 calculator
func NewCREATE2Calculator(logger *logger.Logger, ethClient *ethclient.Client) *CREATE2Calculator {
calc := &CREATE2Calculator{
logger: logger,
factories: make(map[string]*FactoryConfig),
ethClient: ethClient,
curveCache: make(map[string]common.Address),
}
// Initialize with known factory configurations
calc.initializeFactories()
return calc
}
// initializeFactories sets up configurations for known DEX factories
func (c *CREATE2Calculator) initializeFactories() {
// Uniswap V3 Factory
c.factories["uniswap_v3"] = &FactoryConfig{
Name: "uniswap_v3",
Address: common.HexToAddress("0x1F98431c8aD98523631AE4a59f267346ea31F984"),
InitCodeHash: common.HexToHash("0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54"),
FeeStructure: FeeStructure{
HasFee: true,
DefaultFees: []uint32{500, 3000, 10000}, // 0.05%, 0.3%, 1%
},
SortTokens: true,
}
// Uniswap V2 Factory
c.factories["uniswap_v2"] = &FactoryConfig{
Name: "uniswap_v2",
Address: common.HexToAddress("0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f"),
InitCodeHash: common.HexToHash("0x96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f"),
FeeStructure: FeeStructure{
HasFee: false,
DefaultFees: []uint32{3000}, // Fixed 0.3%
},
SortTokens: true,
}
// SushiSwap Factory (same as Uniswap V2 but different address)
c.factories["sushiswap"] = &FactoryConfig{
Name: "sushiswap",
Address: common.HexToAddress("0xC0AEe478e3658e2610c5F7A4A2E1777cE9e4f2Ac"),
InitCodeHash: common.HexToHash("0xe18a34eb0e04b04f7a0ac29a6e80748dca96319b42c54d679cb821dca90c6303"),
FeeStructure: FeeStructure{
HasFee: false,
DefaultFees: []uint32{3000}, // Fixed 0.3%
},
SortTokens: true,
}
// Camelot V3 (Arbitrum-specific)
c.factories["camelot_v3"] = &FactoryConfig{
Name: "camelot_v3",
Address: common.HexToAddress("0x1a3c9B1d2F0529D97f2afC5136Cc23e58f1FD35B"),
InitCodeHash: common.HexToHash("0xa856464ae65f7619087bc369daaf7e387dae1e5af69cfa7935850ebf754b04c1"),
FeeStructure: FeeStructure{
HasFee: true,
DefaultFees: []uint32{500, 3000, 10000}, // Similar to Uniswap V3
},
SortTokens: true,
}
// Curve Factory (simplified - Curve uses different math)
c.factories["curve"] = &FactoryConfig{
Name: "curve",
Address: common.HexToAddress("0xF18056Bbd320E96A48e3Fbf8bC061322531aac99"),
InitCodeHash: common.HexToHash("0x00"), // Curve doesn't use standard CREATE2
FeeStructure: FeeStructure{
HasFee: true,
DefaultFees: []uint32{400}, // 0.04% typical
},
SortTokens: false, // Curve maintains token order
}
}
// CalculatePoolAddress calculates the pool address using CREATE2
func (c *CREATE2Calculator) CalculatePoolAddress(factoryName string, token0, token1 common.Address, fee uint32) (common.Address, error) {
factory, exists := c.factories[factoryName]
if !exists {
return common.Address{}, fmt.Errorf("unknown factory: %s", factoryName)
}
// Sort tokens if required by the factory
if factory.SortTokens {
if token0.Big().Cmp(token1.Big()) > 0 {
token0, token1 = token1, token0
}
}
// Calculate salt based on factory type
salt, err := c.calculateSalt(factory, token0, token1, fee)
if err != nil {
return common.Address{}, fmt.Errorf("failed to calculate salt: %w", err)
}
// Special handling for factories that don't use standard CREATE2
if factoryName == "curve" {
return c.calculateCurvePoolAddress(token0, token1, fee)
}
// Standard CREATE2 calculation:
// address = keccak256(0xff + factory_address + salt + init_code_hash)[12:]
// Prepare the data for hashing
data := make([]byte, 0, 85) // 1 + 20 + 32 + 32 = 85 bytes
data = append(data, 0xff) // 1 byte
data = append(data, factory.Address.Bytes()...) // 20 bytes
data = append(data, salt...) // 32 bytes
data = append(data, factory.InitCodeHash.Bytes()...) // 32 bytes
// Calculate keccak256 hash
hash := crypto.Keccak256(data)
// Take the last 20 bytes as the address
var poolAddr common.Address
copy(poolAddr[:], hash[12:])
c.logger.Debug(fmt.Sprintf("Calculated %s pool address: %s for tokens %s/%s fee %d",
factoryName, poolAddr.Hex(), token0.Hex(), token1.Hex(), fee))
return poolAddr, nil
}
// calculateSalt generates the salt for CREATE2 calculation
func (c *CREATE2Calculator) calculateSalt(factory *FactoryConfig, token0, token1 common.Address, fee uint32) ([]byte, error) {
switch factory.Name {
case "uniswap_v3", "camelot_v3":
// Uniswap V3 salt: keccak256(abi.encode(token0, token1, fee))
return c.calculateUniswapV3Salt(token0, token1, fee)
case "uniswap_v2", "sushiswap":
// Uniswap V2 salt: keccak256(abi.encodePacked(token0, token1))
return c.calculateUniswapV2Salt(token0, token1)
default:
// Generic salt: keccak256(abi.encode(token0, token1, fee))
return c.calculateGenericSalt(token0, token1, fee)
}
}
// calculateUniswapV3Salt calculates salt for Uniswap V3 style factories
func (c *CREATE2Calculator) calculateUniswapV3Salt(token0, token1 common.Address, fee uint32) ([]byte, error) {
// ABI encode: token0 (32 bytes) + token1 (32 bytes) + fee (32 bytes)
data := make([]byte, 0, 96)
// Pad addresses to 32 bytes
token0Padded := make([]byte, 32)
token1Padded := make([]byte, 32)
feePadded := make([]byte, 32)
copy(token0Padded[12:], token0.Bytes())
copy(token1Padded[12:], token1.Bytes())
// Convert fee to big endian 32 bytes
feeBig := big.NewInt(int64(fee))
feeBytes := feeBig.Bytes()
copy(feePadded[32-len(feeBytes):], feeBytes)
data = append(data, token0Padded...)
data = append(data, token1Padded...)
data = append(data, feePadded...)
hash := crypto.Keccak256(data)
return hash, nil
}
// calculateUniswapV2Salt calculates salt for Uniswap V2 style factories
func (c *CREATE2Calculator) calculateUniswapV2Salt(token0, token1 common.Address) ([]byte, error) {
// ABI encodePacked: token0 (20 bytes) + token1 (20 bytes)
data := make([]byte, 0, 40)
data = append(data, token0.Bytes()...)
data = append(data, token1.Bytes()...)
hash := crypto.Keccak256(data)
return hash, nil
}
// calculateGenericSalt calculates salt for generic factories
func (c *CREATE2Calculator) calculateGenericSalt(token0, token1 common.Address, fee uint32) ([]byte, error) {
// Similar to Uniswap V3 but may have different encoding
return c.calculateUniswapV3Salt(token0, token1, fee)
}
// calculateCurvePoolAddress handles Curve's registry-based pool discovery
func (c *CREATE2Calculator) calculateCurvePoolAddress(token0, token1 common.Address, fee uint32) (common.Address, error) {
// Curve uses a registry-based system rather than deterministic CREATE2
// We need to query multiple Curve registries to find pools
if c.ethClient == nil {
return common.Address{}, fmt.Errorf("ethereum client not configured for curve registry lookups")
}
// Create cache key
cacheKey := fmt.Sprintf("%s-%s-%d", token0.Hex(), token1.Hex(), fee)
if cached, exists := c.curveCache[cacheKey]; exists {
c.logger.Debug(fmt.Sprintf("Using cached Curve pool address: %s", cached.Hex()))
return cached, nil
}
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
defer cancel()
// Curve registry addresses on Arbitrum
registries := []common.Address{
common.HexToAddress("0x0000000022D53366457F9d5E68Ec105046FC4383"), // Main Registry
common.HexToAddress("0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5"), // Factory Registry
common.HexToAddress("0xF18056Bbd320E96A48e3Fbf8bC061322531aac99"), // Crypto Registry
common.HexToAddress("0x7D86446dDb609eD0F5f8684AcF30380a356b2B4c"), // Metapool Factory
}
// Try each registry to find the pool
for i, registryAddr := range registries {
poolAddr, err := c.queryCurveRegistry(ctx, registryAddr, token0, token1, i)
if err != nil {
c.logger.Debug(fmt.Sprintf("Registry %s failed: %v", registryAddr.Hex(), err))
continue
}
if poolAddr != (common.Address{}) {
c.logger.Debug(fmt.Sprintf("Found Curve pool %s in registry %s for tokens %s/%s",
poolAddr.Hex(), registryAddr.Hex(), token0.Hex(), token1.Hex()))
// Cache the result
c.curveCache[cacheKey] = poolAddr
return poolAddr, nil
}
}
// If no pool found in registries, try deterministic calculation for newer Curve factories
return c.calculateCurveDeterministicAddress(token0, token1, fee)
}
// FindPoolsForTokenPair finds all possible pools for a token pair across all factories
func (c *CREATE2Calculator) FindPoolsForTokenPair(token0, token1 common.Address) ([]*PoolIdentifier, error) {
pools := make([]*PoolIdentifier, 0)
for factoryName, factory := range c.factories {
// Sort tokens if required
sortedToken0, sortedToken1 := token0, token1
if factory.SortTokens && token0.Big().Cmp(token1.Big()) > 0 {
sortedToken0, sortedToken1 = token1, token0
}
// Try each default fee tier for this factory
for _, fee := range factory.FeeStructure.DefaultFees {
poolAddr, err := c.CalculatePoolAddress(factoryName, sortedToken0, sortedToken1, fee)
if err != nil {
c.logger.Debug(fmt.Sprintf("Failed to calculate pool address for %s: %v", factoryName, err))
continue
}
pool := &PoolIdentifier{
Factory: factoryName,
Token0: sortedToken0,
Token1: sortedToken1,
Fee: fee,
PoolAddr: poolAddr,
}
pools = append(pools, pool)
}
}
c.logger.Debug(fmt.Sprintf("Found %d potential pools for tokens %s/%s",
len(pools), token0.Hex(), token1.Hex()))
return pools, nil
}
// ValidatePoolAddress verifies if a calculated address matches an expected address
func (c *CREATE2Calculator) ValidatePoolAddress(factoryName string, token0, token1 common.Address, fee uint32, expectedAddr common.Address) bool {
calculatedAddr, err := c.CalculatePoolAddress(factoryName, token0, token1, fee)
if err != nil {
c.logger.Debug(fmt.Sprintf("Validation failed - calculation error: %v", err))
return false
}
match := calculatedAddr == expectedAddr
c.logger.Debug(fmt.Sprintf("Pool address validation: calculated=%s, expected=%s, match=%v",
calculatedAddr.Hex(), expectedAddr.Hex(), match))
return match
}
// GetFactoryConfig returns the configuration for a specific factory
func (c *CREATE2Calculator) GetFactoryConfig(factoryName string) (*FactoryConfig, error) {
factory, exists := c.factories[factoryName]
if !exists {
return nil, fmt.Errorf("unknown factory: %s", factoryName)
}
// Return a copy to prevent modification
configCopy := *factory
return &configCopy, nil
}
// AddCustomFactory adds a custom factory configuration
func (c *CREATE2Calculator) AddCustomFactory(config *FactoryConfig) error {
if config.Name == "" {
return fmt.Errorf("factory name cannot be empty")
}
if config.Address == (common.Address{}) {
return fmt.Errorf("factory address cannot be zero")
}
c.factories[config.Name] = config
c.logger.Info(fmt.Sprintf("Added custom factory: %s at %s", config.Name, config.Address.Hex()))
return nil
}
// ListFactories returns the names of all configured factories
func (c *CREATE2Calculator) ListFactories() []string {
names := make([]string, 0, len(c.factories))
for name := range c.factories {
names = append(names, name)
}
sort.Strings(names)
return names
}
// CalculateInitCodeHash calculates the init code hash for a given bytecode
// This is useful when adding new factories
func CalculateInitCodeHash(initCode []byte) common.Hash {
return crypto.Keccak256Hash(initCode)
}
// VerifyFactorySupport checks if a factory supports CREATE2 pool creation
func (c *CREATE2Calculator) VerifyFactorySupport(factoryName string) error {
factory, exists := c.factories[factoryName]
if !exists {
return fmt.Errorf("factory %s not configured", factoryName)
}
// Basic validation
if factory.Address == (common.Address{}) {
return fmt.Errorf("factory %s has zero address", factoryName)
}
if factory.InitCodeHash == (common.Hash{}) && factoryName != "curve" {
return fmt.Errorf("factory %s has zero init code hash", factoryName)
}
if len(factory.FeeStructure.DefaultFees) == 0 {
return fmt.Errorf("factory %s has no default fees configured", factoryName)
}
return nil
}
// queryCurveRegistry queries a specific Curve registry for pool information
func (c *CREATE2Calculator) queryCurveRegistry(ctx context.Context, registryAddr, token0, token1 common.Address, registryType int) (common.Address, error) {
// Different registry types have different interfaces
switch registryType {
case 0: // Main Registry
return c.queryMainCurveRegistry(ctx, registryAddr, token0, token1)
case 1: // Factory Registry
return c.queryFactoryCurveRegistry(ctx, registryAddr, token0, token1)
case 2: // Crypto Registry
return c.queryCryptoCurveRegistry(ctx, registryAddr, token0, token1)
case 3: // Metapool Factory
return c.queryMetapoolCurveRegistry(ctx, registryAddr, token0, token1)
default:
return common.Address{}, fmt.Errorf("unknown registry type: %d", registryType)
}
}
// queryMainCurveRegistry queries the main Curve registry
func (c *CREATE2Calculator) queryMainCurveRegistry(ctx context.Context, registryAddr, token0, token1 common.Address) (common.Address, error) {
// Query Curve registry using find_pool_for_coins function
c.logger.Debug(fmt.Sprintf("Querying main Curve registry %s for tokens %s/%s",
registryAddr.Hex(), token0.Hex(), token1.Hex()))
if c.ethClient == nil {
return common.Address{}, fmt.Errorf("ethereum client not configured for curve registry lookups")
}
// Curve registry ABI for find_pool_for_coins function
registryABI := `[{"name":"find_pool_for_coins","outputs":[{"type":"address","name":""}],"inputs":[{"type":"address","name":"_from"},{"type":"address","name":"_to"}],"stateMutability":"view","type":"function"}]`
parsedABI, err := abi.JSON(strings.NewReader(registryABI))
if err != nil {
return common.Address{}, fmt.Errorf("failed to parse registry ABI: %w", err)
}
// Pack the function call
callData, err := parsedABI.Pack("find_pool_for_coins", token0, token1)
if err != nil {
return common.Address{}, fmt.Errorf("failed to pack registry call: %w", err)
}
// Make the contract call
callMsg := ethereum.CallMsg{
To: &registryAddr,
Data: callData,
}
result, err := c.ethClient.CallContract(ctx, callMsg, nil)
if err != nil {
return common.Address{}, fmt.Errorf("registry call failed: %w", err)
}
// Unpack the result
var poolAddr common.Address
if err := parsedABI.UnpackIntoInterface(&poolAddr, "find_pool_for_coins", result); err != nil {
return common.Address{}, fmt.Errorf("failed to unpack result: %w", err)
}
// Check if a valid pool was found
if poolAddr == (common.Address{}) {
// Try with reversed token order
callData, err = parsedABI.Pack("find_pool_for_coins", token1, token0)
if err != nil {
return common.Address{}, fmt.Errorf("failed to pack reversed registry call: %w", err)
}
callMsg.Data = callData
result, err = c.ethClient.CallContract(ctx, callMsg, nil)
if err != nil {
return common.Address{}, fmt.Errorf("reversed registry call failed: %w", err)
}
if err := parsedABI.UnpackIntoInterface(&poolAddr, "find_pool_for_coins", result); err != nil {
return common.Address{}, fmt.Errorf("failed to unpack reversed result: %w", err)
}
}
return poolAddr, nil
}
// queryFactoryCurveRegistry queries the Curve factory registry
func (c *CREATE2Calculator) queryFactoryCurveRegistry(ctx context.Context, registryAddr, token0, token1 common.Address) (common.Address, error) {
// Factory registry handles newer permissionless pools
c.logger.Debug(fmt.Sprintf("Querying factory Curve registry %s for tokens %s/%s",
registryAddr.Hex(), token0.Hex(), token1.Hex()))
// Would implement actual registry query here
return common.Address{}, nil
}
// queryCryptoCurveRegistry queries the Curve crypto registry
func (c *CREATE2Calculator) queryCryptoCurveRegistry(ctx context.Context, registryAddr, token0, token1 common.Address) (common.Address, error) {
// Crypto registry handles volatile asset pools
c.logger.Debug(fmt.Sprintf("Querying crypto Curve registry %s for tokens %s/%s",
registryAddr.Hex(), token0.Hex(), token1.Hex()))
// Would implement actual registry query here
return common.Address{}, nil
}
// queryMetapoolCurveRegistry queries the Curve metapool factory
func (c *CREATE2Calculator) queryMetapoolCurveRegistry(ctx context.Context, registryAddr, token0, token1 common.Address) (common.Address, error) {
// Metapool factory handles pools paired with base pools
c.logger.Debug(fmt.Sprintf("Querying metapool Curve registry %s for tokens %s/%s",
registryAddr.Hex(), token0.Hex(), token1.Hex()))
// Would implement actual registry query here
return common.Address{}, nil
}
// calculateCurveDeterministicAddress calculates Curve pool address deterministically for newer factories
func (c *CREATE2Calculator) calculateCurveDeterministicAddress(token0, token1 common.Address, fee uint32) (common.Address, error) {
// Some newer Curve factories do use deterministic CREATE2
// This handles those cases
c.logger.Debug(fmt.Sprintf("Calculating deterministic Curve address for tokens %s/%s fee %d",
token0.Hex(), token1.Hex(), fee))
// Curve's CREATE2 implementation varies by factory
// For stable pools: salt = keccak256(coins, A, fee)
// For crypto pools: salt = keccak256(coins, A, gamma, mid_fee, out_fee, allowed_extra_profit, fee_gamma, adjustment_step, admin_fee, ma_half_time, initial_price)
// Simplified implementation for stable pools
coins := []common.Address{token0, token1}
if token0.Big().Cmp(token1.Big()) > 0 {
coins = []common.Address{token1, token0}
}
// Typical Curve stable pool parameters
A := big.NewInt(200) // Amplification parameter
feeInt := big.NewInt(int64(fee))
// Create salt: keccak256(abi.encode(coins, A, fee))
saltData := make([]byte, 0, 96) // 2*32 + 32 + 32
// Encode coins (32 bytes each)
coin0Padded := make([]byte, 32)
coin1Padded := make([]byte, 32)
copy(coin0Padded[12:], coins[0].Bytes())
copy(coin1Padded[12:], coins[1].Bytes())
// Encode A parameter (32 bytes)
APadded := make([]byte, 32)
ABytes := A.Bytes()
copy(APadded[32-len(ABytes):], ABytes)
// Encode fee (32 bytes)
feePadded := make([]byte, 32)
feeBytes := feeInt.Bytes()
copy(feePadded[32-len(feeBytes):], feeBytes)
saltData = append(saltData, coin0Padded...)
saltData = append(saltData, coin1Padded...)
saltData = append(saltData, APadded...)
saltData = append(saltData, feePadded...)
salt := crypto.Keccak256Hash(saltData)
// Use Curve factory config for CREATE2
factory := c.factories["curve"]
if factory.InitCodeHash == (common.Hash{}) {
// For factories without init code hash, use registry-based approach
return common.Address{}, fmt.Errorf("deterministic calculation not supported for this Curve factory")
}
// Standard CREATE2 calculation
data := make([]byte, 0, 85)
data = append(data, 0xff)
data = append(data, factory.Address.Bytes()...)
data = append(data, salt.Bytes()...)
data = append(data, factory.InitCodeHash.Bytes()...)
hash := crypto.Keccak256(data)
var poolAddr common.Address
copy(poolAddr[:], hash[12:])
c.logger.Debug(fmt.Sprintf("Calculated deterministic Curve pool address: %s", poolAddr.Hex()))
return poolAddr, nil
}