Files
mev-beta/orig/.claude/commands/optimize-performance.md
Administrator c54c569f30 refactor: move all remaining files to orig/ directory
Completed clean root directory structure:
- Root now contains only: .git, .env, docs/, orig/
- Moved all remaining files and directories to orig/:
  - Config files (.claude, .dockerignore, .drone.yml, etc.)
  - All .env variants (except active .env)
  - Git config (.gitconfig, .github, .gitignore, etc.)
  - Tool configs (.golangci.yml, .revive.toml, etc.)
  - Documentation (*.md files, @prompts)
  - Build files (Dockerfiles, Makefile, go.mod, go.sum)
  - Docker compose files
  - All source directories (scripts, tests, tools, etc.)
  - Runtime directories (logs, monitoring, reports)
  - Dependency files (node_modules, lib, cache)
  - Special files (--delete)

- Removed empty runtime directories (bin/, data/)

V2 structure is now clean:
- docs/planning/ - V2 planning documents
- orig/ - Complete V1 codebase preserved
- .env - Active environment config (not in git)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:53:05 +01:00

2.1 KiB

Optimize Performance

Optimize the performance of the MEV bot in the following area: $ARGUMENTS

Performance Optimization Strategy:

1. Profiling and Measurement

# CPU profiling
go tool pprof http://localhost:9090/debug/pprof/profile?seconds=30

# Memory profiling
go tool pprof http://localhost:9090/debug/pprof/heap

# Trace analysis
go tool trace trace.out

# Benchmark testing
go test -bench=. -benchmem ./...

2. Optimization Areas

Concurrency Optimization

  • Worker pool sizing and configuration
  • Channel buffer optimization
  • Goroutine pooling and reuse
  • Lock contention reduction
  • Context cancellation patterns

Memory Optimization

  • Object pooling for frequent allocations
  • Buffer reuse patterns
  • Garbage collection tuning
  • Memory leak prevention
  • Slice and map pre-allocation

I/O Optimization

  • Connection pooling for RPC calls
  • Request batching and pipelining
  • Caching frequently accessed data
  • Asynchronous processing patterns
  • Rate limiting optimization

Algorithm Optimization

  • Uniswap math calculation efficiency
  • Event parsing performance
  • Data structure selection
  • Caching strategies
  • Indexing improvements

3. MEV Bot Specific Optimizations

Transaction Processing Pipeline

  • Parallel transaction processing
  • Event filtering optimization
  • Batch processing strategies
  • Pipeline stage optimization

Market Analysis

  • Price calculation caching
  • Pool data caching
  • Historical data indexing
  • Real-time processing optimization

Arbitrage Detection

  • Opportunity scanning efficiency
  • Profit calculation optimization
  • Market impact analysis speed
  • Cross-DEX comparison performance

Implementation Guidelines:

  • Measure before optimizing (baseline metrics)
  • Focus on bottlenecks identified through profiling
  • Maintain code readability and maintainability
  • Add performance tests for regressions
  • Document performance characteristics

Deliverables:

  • Performance benchmark results (before/after)
  • Optimized code with maintained functionality
  • Performance monitoring enhancements
  • Optimization documentation
  • Regression test suite