Files
mev-beta/vendor/github.com/consensys/gnark-crypto/ecc/bls12-381/g1.go

1300 lines
29 KiB
Go

// Copyright 2020-2025 Consensys Software Inc.
// Licensed under the Apache License, Version 2.0. See the LICENSE file for details.
// Code generated by consensys/gnark-crypto DO NOT EDIT
package bls12381
import (
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark-crypto/ecc/bls12-381/fp"
"github.com/consensys/gnark-crypto/ecc/bls12-381/fr"
"github.com/consensys/gnark-crypto/ecc/bls12-381/hash_to_curve"
"github.com/consensys/gnark-crypto/internal/parallel"
"math/big"
"runtime"
)
// G1Affine is a point in affine coordinates (x,y)
type G1Affine struct {
X, Y fp.Element
}
// G1Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³)
type G1Jac struct {
X, Y, Z fp.Element
}
// g1JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²)
type g1JacExtended struct {
X, Y, ZZ, ZZZ fp.Element
}
// -------------------------------------------------------------------------------------------------
// Affine coordinates
// Set sets p to a in affine coordinates.
func (p *G1Affine) Set(a *G1Affine) *G1Affine {
p.X, p.Y = a.X, a.Y
return p
}
// SetInfinity sets p to the infinity point, which is encoded as (0,0).
// N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B).
func (p *G1Affine) SetInfinity() *G1Affine {
p.X.SetZero()
p.Y.SetZero()
return p
}
// ScalarMultiplication computes and returns p = [s]a
// where p and a are affine points.
func (p *G1Affine) ScalarMultiplication(a *G1Affine, s *big.Int) *G1Affine {
var _p G1Jac
_p.FromAffine(a)
if s.BitLen() >= g1ScalarMulChoose {
_p.mulGLV(&_p, s)
} else {
_p.mulWindowed(&_p, s)
}
p.FromJacobian(&_p)
return p
}
// ScalarMultiplicationBase computes and returns p = [s]g
// where g is the affine point generating the prime subgroup.
func (p *G1Affine) ScalarMultiplicationBase(s *big.Int) *G1Affine {
var _p G1Jac
if s.BitLen() >= g1ScalarMulChoose {
_p.mulGLV(&g1Gen, s)
} else {
_p.mulWindowed(&g1Gen, s)
}
p.FromJacobian(&_p)
return p
}
// Add adds two points in affine coordinates.
// It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
// ~Cost: 4M + 2S
func (p *G1Affine) Add(a, b *G1Affine) *G1Affine {
var q G1Jac
// a is infinity, return b
if a.IsInfinity() {
p.Set(b)
return p
}
// b is infinity, return a
if b.IsInfinity() {
p.Set(a)
return p
}
if a.X.Equal(&b.X) {
// if b == a, we double instead
if a.Y.Equal(&b.Y) {
q.DoubleMixed(a)
return p.FromJacobian(&q)
} else {
// if b == -a, we return 0
return p.SetInfinity()
}
}
var H, HH, I, J, r, V fp.Element
H.Sub(&b.X, &a.X)
HH.Square(&H)
I.Double(&HH).Double(&I)
J.Mul(&H, &I)
r.Sub(&b.Y, &a.Y)
r.Double(&r)
V.Mul(&a.X, &I)
q.X.Square(&r).
Sub(&q.X, &J).
Sub(&q.X, &V).
Sub(&q.X, &V)
q.Y.Sub(&V, &q.X).
Mul(&q.Y, &r)
J.Mul(&a.Y, &J).Double(&J)
q.Y.Sub(&q.Y, &J)
q.Z.Double(&H)
return p.FromJacobian(&q)
}
// Double doubles a point in affine coordinates.
// It converts the point to Jacobian coordinates, doubles it using Jacobian
// addition with a.Z=1, and converts it back to affine coordinates.
//
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
// ~Cost: 1M + 5S
func (p *G1Affine) Double(a *G1Affine) *G1Affine {
var q G1Jac
q.FromAffine(a)
q.DoubleMixed(a)
p.FromJacobian(&q)
return p
}
// Sub subtracts two points in affine coordinates.
// It uses a similar approach to Add, but negates the second point before adding.
func (p *G1Affine) Sub(a, b *G1Affine) *G1Affine {
var bneg G1Affine
bneg.Neg(b)
p.Add(a, &bneg)
return p
}
// Equal tests if two points in affine coordinates are equal.
func (p *G1Affine) Equal(a *G1Affine) bool {
return p.X.Equal(&a.X) && p.Y.Equal(&a.Y)
}
// Neg sets p to the affine negative point -a = (a.X, -a.Y).
func (p *G1Affine) Neg(a *G1Affine) *G1Affine {
p.X = a.X
p.Y.Neg(&a.Y)
return p
}
// FromJacobian converts a point p1 from Jacobian to affine coordinates.
func (p *G1Affine) FromJacobian(p1 *G1Jac) *G1Affine {
var a, b fp.Element
if p1.Z.IsZero() {
p.X.SetZero()
p.Y.SetZero()
return p
}
a.Inverse(&p1.Z)
b.Square(&a)
p.X.Mul(&p1.X, &b)
p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a)
return p
}
// String returns the string representation E(x,y) of the affine point p or "O" if it is infinity.
func (p *G1Affine) String() string {
if p.IsInfinity() {
return "O"
}
return "E([" + p.X.String() + "," + p.Y.String() + "])"
}
// IsInfinity checks if the affine point p is infinity, which is encoded as (0,0).
// N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B).
func (p *G1Affine) IsInfinity() bool {
return p.X.IsZero() && p.Y.IsZero()
}
// IsOnCurve returns true if the affine point p in on the curve.
func (p *G1Affine) IsOnCurve() bool {
if p.IsInfinity() {
return true
}
var left, right fp.Element
left.Square(&p.Y)
right.Square(&p.X).Mul(&right, &p.X)
right.Add(&right, &bCurveCoeff)
return left.Equal(&right)
}
// IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise.
func (p *G1Affine) IsInSubGroup() bool {
if !p.IsOnCurve() {
return false
}
var res, _p G1Jac
_p.FromAffine(p)
res.phi(&_p).
mulBySeed(&res).
mulBySeed(&res).
Neg(&res)
return res.Equal(&_p)
}
// -------------------------------------------------------------------------------------------------
// Jacobian coordinates
// Set sets p to a in Jacobian coordinates.
func (p *G1Jac) Set(q *G1Jac) *G1Jac {
p.X, p.Y, p.Z = q.X, q.Y, q.Z
return p
}
// Equal tests if two points in Jacobian coordinates are equal.
func (p *G1Jac) Equal(q *G1Jac) bool {
// If one point is infinity, the other must also be infinity.
if p.Z.IsZero() {
return q.Z.IsZero()
}
// If the other point is infinity, return false since we can't
// the following checks would be incorrect.
if q.Z.IsZero() {
return false
}
var pZSquare, aZSquare fp.Element
pZSquare.Square(&p.Z)
aZSquare.Square(&q.Z)
var lhs, rhs fp.Element
lhs.Mul(&p.X, &aZSquare)
rhs.Mul(&q.X, &pZSquare)
if !lhs.Equal(&rhs) {
return false
}
lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z)
rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z)
return lhs.Equal(&rhs)
}
// Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z).
func (p *G1Jac) Neg(q *G1Jac) *G1Jac {
*p = *q
p.Y.Neg(&q.Y)
return p
}
// AddAssign sets p to p+a in Jacobian coordinates.
//
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
// ~Cost: 11M + 5S
func (p *G1Jac) AddAssign(q *G1Jac) *G1Jac {
// p is infinity, return q
if p.Z.IsZero() {
p.Set(q)
return p
}
// q is infinity, return p
if q.Z.IsZero() {
return p
}
var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fp.Element
Z1Z1.Square(&q.Z)
Z2Z2.Square(&p.Z)
U1.Mul(&q.X, &Z2Z2)
U2.Mul(&p.X, &Z1Z1)
S1.Mul(&q.Y, &p.Z).
Mul(&S1, &Z2Z2)
S2.Mul(&p.Y, &q.Z).
Mul(&S2, &Z1Z1)
// if p == q, we double instead
if U1.Equal(&U2) && S1.Equal(&S2) {
return p.DoubleAssign()
}
H.Sub(&U2, &U1)
I.Double(&H).
Square(&I)
J.Mul(&H, &I)
r.Sub(&S2, &S1).Double(&r)
V.Mul(&U1, &I)
p.X.Square(&r).
Sub(&p.X, &J).
Sub(&p.X, &V).
Sub(&p.X, &V)
p.Y.Sub(&V, &p.X).
Mul(&p.Y, &r)
S1.Mul(&S1, &J).Double(&S1)
p.Y.Sub(&p.Y, &S1)
p.Z.Add(&p.Z, &q.Z)
p.Z.Square(&p.Z).
Sub(&p.Z, &Z1Z1).
Sub(&p.Z, &Z2Z2).
Mul(&p.Z, &H)
return p
}
// SubAssign sets p to p-a in Jacobian coordinates.
// It uses a similar approach to AddAssign, but negates the point a before adding.
func (p *G1Jac) SubAssign(q *G1Jac) *G1Jac {
var tmp G1Jac
tmp.Set(q)
tmp.Y.Neg(&tmp.Y)
p.AddAssign(&tmp)
return p
}
// Double sets p to [2]q in Jacobian coordinates.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
// ~Cost: 1M + 5S
func (p *G1Jac) DoubleMixed(a *G1Affine) *G1Jac {
var XX, YY, YYYY, S, M, T fp.Element
XX.Square(&a.X)
YY.Square(&a.Y)
YYYY.Square(&YY)
S.Add(&a.X, &YY).
Square(&S).
Sub(&S, &XX).
Sub(&S, &YYYY).
Double(&S)
M.Double(&XX).
Add(&M, &XX) // -> + A, but A=0 here
T.Square(&M).
Sub(&T, &S).
Sub(&T, &S)
p.X.Set(&T)
p.Y.Sub(&S, &T).
Mul(&p.Y, &M)
YYYY.Double(&YYYY).
Double(&YYYY).
Double(&YYYY)
p.Y.Sub(&p.Y, &YYYY)
p.Z.Double(&a.Y)
return p
}
// AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1.
//
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
// ~Cost: 7M + 4S
func (p *G1Jac) AddMixed(a *G1Affine) *G1Jac {
//if a is infinity return p
if a.IsInfinity() {
return p
}
// p is infinity, return a
if p.Z.IsZero() {
p.X = a.X
p.Y = a.Y
p.Z.SetOne()
return p
}
var Z1Z1, U2, S2, H, HH, I, J, r, V fp.Element
Z1Z1.Square(&p.Z)
U2.Mul(&a.X, &Z1Z1)
S2.Mul(&a.Y, &p.Z).
Mul(&S2, &Z1Z1)
// if p == a, we double instead
if U2.Equal(&p.X) && S2.Equal(&p.Y) {
return p.DoubleMixed(a)
}
H.Sub(&U2, &p.X)
HH.Square(&H)
I.Double(&HH).Double(&I)
J.Mul(&H, &I)
r.Sub(&S2, &p.Y).Double(&r)
V.Mul(&p.X, &I)
p.X.Square(&r).
Sub(&p.X, &J).
Sub(&p.X, &V).
Sub(&p.X, &V)
J.Mul(&J, &p.Y).Double(&J)
p.Y.Sub(&V, &p.X).
Mul(&p.Y, &r)
p.Y.Sub(&p.Y, &J)
p.Z.Add(&p.Z, &H)
p.Z.Square(&p.Z).
Sub(&p.Z, &Z1Z1).
Sub(&p.Z, &HH)
return p
}
// Double sets p to [2]q in Jacobian coordinates.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
// ~Cost: 2M + 5S
func (p *G1Jac) Double(q *G1Jac) *G1Jac {
p.Set(q)
p.DoubleAssign()
return p
}
// DoubleAssign doubles p in Jacobian coordinates.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
// ~Cost: 2M + 5S
func (p *G1Jac) DoubleAssign() *G1Jac {
var A, B, C, D, E, F, t fp.Element
A.Square(&p.X)
B.Square(&p.Y)
C.Square(&B)
D.Add(&p.X, &B).
Square(&D).
Sub(&D, &A).
Sub(&D, &C).
Double(&D)
E.Double(&A).
Add(&E, &A)
F.Square(&E)
t.Double(&D)
p.Z.Mul(&p.Y, &p.Z).
Double(&p.Z)
p.X.Sub(&F, &t)
p.Y.Sub(&D, &p.X).
Mul(&p.Y, &E)
t.Double(&C).
Double(&t).
Double(&t)
p.Y.Sub(&p.Y, &t)
return p
}
// ScalarMultiplication computes and returns p = [s]a
// where p and a are Jacobian points.
// using the GLV technique.
// see https://www.iacr.org/archive/crypto2001/21390189.pdf
func (p *G1Jac) ScalarMultiplication(q *G1Jac, s *big.Int) *G1Jac {
if s.BitLen() >= g1ScalarMulChoose {
return p.mulGLV(q, s)
} else {
return p.mulWindowed(q, s)
}
}
// ScalarMultiplicationBase computes and returns p = [s]g
// where g is the prime subgroup generator.
func (p *G1Jac) ScalarMultiplicationBase(s *big.Int) *G1Jac {
if s.BitLen() >= g1ScalarMulChoose {
return p.mulGLV(&g1Gen, s)
} else {
return p.mulWindowed(&g1Gen, s)
}
}
// String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity.
func (p *G1Jac) String() string {
_p := G1Affine{}
_p.FromJacobian(p)
return _p.String()
}
// FromAffine converts a point a from affine to Jacobian coordinates.
func (p *G1Jac) FromAffine(a *G1Affine) *G1Jac {
if a.IsInfinity() {
p.Z.SetZero()
p.X.SetOne()
p.Y.SetOne()
return p
}
p.Z.SetOne()
p.X.Set(&a.X)
p.Y.Set(&a.Y)
return p
}
// IsOnCurve returns true if the Jacobian point p in on the curve.
func (p *G1Jac) IsOnCurve() bool {
var left, right, tmp, ZZ fp.Element
left.Square(&p.Y)
right.Square(&p.X).Mul(&right, &p.X)
ZZ.Square(&p.Z)
tmp.Square(&ZZ).Mul(&tmp, &ZZ)
// Mul tmp by bCurveCoeff=4
tmp.Double(&tmp).Double(&tmp)
right.Add(&right, &tmp)
return left.Equal(&right)
}
// IsInSubGroup returns true if p is on the r-torsion, false otherwise.
// Z[r,0]+Z[-lambdaG1Affine, 1] is the kernel
// of (u,v)->u+lambdaG1Affinev mod r. Expressing r, lambdaG1Affine as
// polynomials in x, a short vector of this Zmodule is
// 1, x². So we check that p+x²ϕ(p)
// is the infinity.
func (p *G1Jac) IsInSubGroup() bool {
if !p.IsOnCurve() {
return false
}
var res G1Jac
res.phi(p).
mulBySeed(&res).
mulBySeed(&res).
Neg(&res)
return res.Equal(p)
}
func GeneratePointNotInG1(f fp.Element) G1Jac {
var res, jac G1Jac
aff := MapToCurve1(&f)
hash_to_curve.G1Isogeny(&aff.X, &aff.Y)
jac.FromAffine(&aff)
// p+x²ϕ(p) = [r]p
res.phi(&jac).
mulBySeed(&res).
mulBySeed(&res).
AddAssign(&jac)
return res
}
// mulWindowed computes the 2-bits windowed double-and-add scalar
// multiplication p=[s]q in Jacobian coordinates.
func (p *G1Jac) mulWindowed(q *G1Jac, s *big.Int) *G1Jac {
var res G1Jac
var ops [3]G1Jac
ops[0].Set(q)
if s.Sign() == -1 {
ops[0].Neg(&ops[0])
}
res.Set(&g1Infinity)
ops[1].Double(&ops[0])
ops[2].Set(&ops[0]).AddAssign(&ops[1])
b := s.Bytes()
for i := range b {
w := b[i]
mask := byte(0xc0)
for j := 0; j < 4; j++ {
res.DoubleAssign().DoubleAssign()
c := (w & mask) >> (6 - 2*j)
if c != 0 {
res.AddAssign(&ops[c-1])
}
mask = mask >> 2
}
}
p.Set(&res)
return p
}
// mulBySeed multiplies the point q by the seed xGen in Jacobian coordinates
// using an optimized addition chain.
func (p *G1Jac) mulBySeed(q *G1Jac) *G1Jac {
// Generated by github.com/mmcloughlin/addchain v0.4.0.
// Operations: 63 doublings 5 additions
var res G1Jac
res.Double(q)
res.AddAssign(q)
for i := 0; i < 2; i++ {
res.Double(&res)
}
res.AddAssign(q)
for i := 0; i < 3; i++ {
res.Double(&res)
}
res.AddAssign(q)
for i := 0; i < 9; i++ {
res.Double(&res)
}
res.AddAssign(q)
for i := 0; i < 32; i++ {
res.Double(&res)
}
res.AddAssign(q)
for i := 0; i < 16; i++ {
res.Double(&res)
}
p.Set(&res)
return p
}
// phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y),
// where w is a third root of unity.
func (p *G1Jac) phi(q *G1Jac) *G1Jac {
p.Set(q)
p.X.Mul(&p.X, &thirdRootOneG1)
return p
}
// mulGLV computes the scalar multiplication using a windowed-GLV method
//
// see https://www.iacr.org/archive/crypto2001/21390189.pdf
func (p *G1Jac) mulGLV(q *G1Jac, s *big.Int) *G1Jac {
var table [15]G1Jac
var res G1Jac
var k1, k2 fr.Element
res.Set(&g1Infinity)
// table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q
table[0].Set(q)
table[3].phi(q)
// split the scalar, modifies ±q, ϕ(q) accordingly
k := ecc.SplitScalar(s, &glvBasis)
if k[0].Sign() == -1 {
k[0].Neg(&k[0])
table[0].Neg(&table[0])
}
if k[1].Sign() == -1 {
k[1].Neg(&k[1])
table[3].Neg(&table[3])
}
// precompute table (2 bits sliding window)
// table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0
table[1].Double(&table[0])
table[2].Set(&table[1]).AddAssign(&table[0])
table[4].Set(&table[3]).AddAssign(&table[0])
table[5].Set(&table[3]).AddAssign(&table[1])
table[6].Set(&table[3]).AddAssign(&table[2])
table[7].Double(&table[3])
table[8].Set(&table[7]).AddAssign(&table[0])
table[9].Set(&table[7]).AddAssign(&table[1])
table[10].Set(&table[7]).AddAssign(&table[2])
table[11].Set(&table[7]).AddAssign(&table[3])
table[12].Set(&table[11]).AddAssign(&table[0])
table[13].Set(&table[11]).AddAssign(&table[1])
table[14].Set(&table[11]).AddAssign(&table[2])
// bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max
// this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift
k1 = k1.SetBigInt(&k[0]).Bits()
k2 = k2.SetBigInt(&k[1]).Bits()
// we don't target constant-timeness so we check first if we increase the bounds or not
maxBit := k1.BitLen()
if k2.BitLen() > maxBit {
maxBit = k2.BitLen()
}
hiWordIndex := (maxBit - 1) / 64
// loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds
for i := hiWordIndex; i >= 0; i-- {
mask := uint64(3) << 62
for j := 0; j < 32; j++ {
res.Double(&res).Double(&res)
b1 := (k1[i] & mask) >> (62 - 2*j)
b2 := (k2[i] & mask) >> (62 - 2*j)
if b1|b2 != 0 {
s := (b2<<2 | b1)
res.AddAssign(&table[s-1])
}
mask = mask >> 2
}
}
p.Set(&res)
return p
}
// ClearCofactor maps a point in curve to r-torsion
func (p *G1Affine) ClearCofactor(a *G1Affine) *G1Affine {
var _p G1Jac
_p.FromAffine(a)
_p.ClearCofactor(&_p)
p.FromJacobian(&_p)
return p
}
// ClearCofactor maps a point in E(Fp) to E(Fp)[r]
func (p *G1Jac) ClearCofactor(q *G1Jac) *G1Jac {
// cf https://eprint.iacr.org/2019/403.pdf, 5
var res G1Jac
res.mulBySeed(q).AddAssign(q)
p.Set(&res)
return p
}
// JointScalarMultiplication computes [s1]a1+[s2]a2 using Strauss-Shamir technique
// where a1 and a2 are affine points.
func (p *G1Jac) JointScalarMultiplication(a1, a2 *G1Affine, s1, s2 *big.Int) *G1Jac {
var res, p1, p2 G1Jac
res.Set(&g1Infinity)
p1.FromAffine(a1)
p2.FromAffine(a2)
var table [15]G1Jac
var k1, k2 big.Int
if s1.Sign() == -1 {
k1.Neg(s1)
table[0].Neg(&p1)
} else {
k1.Set(s1)
table[0].Set(&p1)
}
if s2.Sign() == -1 {
k2.Neg(s2)
table[3].Neg(&p2)
} else {
k2.Set(s2)
table[3].Set(&p2)
}
// precompute table (2 bits sliding window)
table[1].Double(&table[0])
table[2].Set(&table[1]).AddAssign(&table[0])
table[4].Set(&table[3]).AddAssign(&table[0])
table[5].Set(&table[3]).AddAssign(&table[1])
table[6].Set(&table[3]).AddAssign(&table[2])
table[7].Double(&table[3])
table[8].Set(&table[7]).AddAssign(&table[0])
table[9].Set(&table[7]).AddAssign(&table[1])
table[10].Set(&table[7]).AddAssign(&table[2])
table[11].Set(&table[7]).AddAssign(&table[3])
table[12].Set(&table[11]).AddAssign(&table[0])
table[13].Set(&table[11]).AddAssign(&table[1])
table[14].Set(&table[11]).AddAssign(&table[2])
var s [2]fr.Element
s[0] = s[0].SetBigInt(&k1).Bits()
s[1] = s[1].SetBigInt(&k2).Bits()
maxBit := k1.BitLen()
if k2.BitLen() > maxBit {
maxBit = k2.BitLen()
}
hiWordIndex := (maxBit - 1) / 64
for i := hiWordIndex; i >= 0; i-- {
mask := uint64(3) << 62
for j := 0; j < 32; j++ {
res.Double(&res).Double(&res)
b1 := (s[0][i] & mask) >> (62 - 2*j)
b2 := (s[1][i] & mask) >> (62 - 2*j)
if b1|b2 != 0 {
s := (b2<<2 | b1)
res.AddAssign(&table[s-1])
}
mask = mask >> 2
}
}
p.Set(&res)
return p
}
// JointScalarMultiplicationBase computes [s1]g+[s2]a using Straus-Shamir technique
// where g is the prime subgroup generator.
func (p *G1Jac) JointScalarMultiplicationBase(a *G1Affine, s1, s2 *big.Int) *G1Jac {
return p.JointScalarMultiplication(&g1GenAff, a, s1, s2)
}
// -------------------------------------------------------------------------------------------------
// extended Jacobian coordinates
// Set sets p to a in extended Jacobian coordinates.
func (p *g1JacExtended) Set(q *g1JacExtended) *g1JacExtended {
p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ
return p
}
// SetInfinity sets p to the infinity point (1,1,0,0).
func (p *g1JacExtended) SetInfinity() *g1JacExtended {
p.X.SetOne()
p.Y.SetOne()
p.ZZ = fp.Element{}
p.ZZZ = fp.Element{}
return p
}
// IsInfinity checks if the p is infinity, i.e. p.ZZ=0.
func (p *g1JacExtended) IsInfinity() bool {
return p.ZZ.IsZero()
}
// fromJacExtended converts an extended Jacobian point to an affine point.
func (p *G1Affine) fromJacExtended(q *g1JacExtended) *G1Affine {
if q.ZZ.IsZero() {
p.X = fp.Element{}
p.Y = fp.Element{}
return p
}
p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X)
p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y)
return p
}
// fromJacExtended converts an extended Jacobian point to a Jacobian point.
func (p *G1Jac) fromJacExtended(q *g1JacExtended) *G1Jac {
if q.ZZ.IsZero() {
p.Set(&g1Infinity)
return p
}
p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ)
p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ)
p.Z.Set(&q.ZZZ)
return p
}
// unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point.
func (p *G1Jac) unsafeFromJacExtended(q *g1JacExtended) *G1Jac {
p.X.Square(&q.ZZ).Mul(&p.X, &q.X)
p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y)
p.Z = q.ZZZ
return p
}
// add sets p to p+q in extended Jacobian coordinates.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s
// ~Cost: 12M + 2S
func (p *g1JacExtended) add(q *g1JacExtended) *g1JacExtended {
//if q is infinity return p
if q.ZZ.IsZero() {
return p
}
// p is infinity, return q
if p.ZZ.IsZero() {
p.Set(q)
return p
}
var A, B, U1, U2, S1, S2 fp.Element
// p2: q, p1: p
U2.Mul(&q.X, &p.ZZ)
U1.Mul(&p.X, &q.ZZ)
A.Sub(&U2, &U1)
S2.Mul(&q.Y, &p.ZZZ)
S1.Mul(&p.Y, &q.ZZZ)
B.Sub(&S2, &S1)
if A.IsZero() {
if B.IsZero() {
return p.double(q)
}
p.ZZ = fp.Element{}
p.ZZZ = fp.Element{}
return p
}
var P, R, PP, PPP, Q, V fp.Element
P.Sub(&U2, &U1)
R.Sub(&S2, &S1)
PP.Square(&P)
PPP.Mul(&P, &PP)
Q.Mul(&U1, &PP)
V.Mul(&S1, &PPP)
p.X.Square(&R).
Sub(&p.X, &PPP).
Sub(&p.X, &Q).
Sub(&p.X, &Q)
p.Y.Sub(&Q, &p.X).
Mul(&p.Y, &R).
Sub(&p.Y, &V)
p.ZZ.Mul(&p.ZZ, &q.ZZ).
Mul(&p.ZZ, &PP)
p.ZZZ.Mul(&p.ZZZ, &q.ZZZ).
Mul(&p.ZZZ, &PPP)
return p
}
// double sets p to [2]q in Jacobian extended coordinates.
//
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1
// ~Cost: 6M + 3S
//
// N.B.: since we consider any point on Z=0 as the point at infinity
// this doubling formula works for infinity points as well.
func (p *g1JacExtended) double(q *g1JacExtended) *g1JacExtended {
var U, V, W, S, XX, M fp.Element
U.Double(&q.Y)
V.Square(&U)
W.Mul(&U, &V)
S.Mul(&q.X, &V)
XX.Square(&q.X)
M.Double(&XX).
Add(&M, &XX) // -> + A, but A=0 here
U.Mul(&W, &q.Y)
p.X.Square(&M).
Sub(&p.X, &S).
Sub(&p.X, &S)
p.Y.Sub(&S, &p.X).
Mul(&p.Y, &M).
Sub(&p.Y, &U)
p.ZZ.Mul(&V, &q.ZZ)
p.ZZZ.Mul(&W, &q.ZZZ)
return p
}
// addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1.
//
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s
// ~Cost: 8M + 2S
func (p *g1JacExtended) addMixed(a *G1Affine) *g1JacExtended {
//if a is infinity return p
if a.IsInfinity() {
return p
}
// p is infinity, return a
if p.ZZ.IsZero() {
p.X = a.X
p.Y = a.Y
p.ZZ.SetOne()
p.ZZZ.SetOne()
return p
}
var P, R fp.Element
// p2: a, p1: p
P.Mul(&a.X, &p.ZZ)
P.Sub(&P, &p.X)
R.Mul(&a.Y, &p.ZZZ)
R.Sub(&R, &p.Y)
if P.IsZero() {
if R.IsZero() {
return p.doubleMixed(a)
}
p.ZZ = fp.Element{}
p.ZZZ = fp.Element{}
return p
}
var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element
PP.Square(&P)
PPP.Mul(&P, &PP)
Q.Mul(&p.X, &PP)
RR.Square(&R)
X3.Sub(&RR, &PPP)
Q2.Double(&Q)
p.X.Sub(&X3, &Q2)
Y3.Sub(&Q, &p.X).Mul(&Y3, &R)
R.Mul(&p.Y, &PPP)
p.Y.Sub(&Y3, &R)
p.ZZ.Mul(&p.ZZ, &PP)
p.ZZZ.Mul(&p.ZZZ, &PPP)
return p
}
// subMixed works the same as addMixed, but negates a.Y.
//
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s
// ~Cost: 8M + 2S
func (p *g1JacExtended) subMixed(a *G1Affine) *g1JacExtended {
//if a is infinity return p
if a.IsInfinity() {
return p
}
// p is infinity, return a
if p.ZZ.IsZero() {
p.X = a.X
p.Y.Neg(&a.Y)
p.ZZ.SetOne()
p.ZZZ.SetOne()
return p
}
var P, R fp.Element
// p2: a, p1: p
P.Mul(&a.X, &p.ZZ)
P.Sub(&P, &p.X)
R.Mul(&a.Y, &p.ZZZ)
R.Neg(&R)
R.Sub(&R, &p.Y)
if P.IsZero() {
if R.IsZero() {
return p.doubleNegMixed(a)
}
p.ZZ = fp.Element{}
p.ZZZ = fp.Element{}
return p
}
var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element
PP.Square(&P)
PPP.Mul(&P, &PP)
Q.Mul(&p.X, &PP)
RR.Square(&R)
X3.Sub(&RR, &PPP)
Q2.Double(&Q)
p.X.Sub(&X3, &Q2)
Y3.Sub(&Q, &p.X).Mul(&Y3, &R)
R.Mul(&p.Y, &PPP)
p.Y.Sub(&Y3, &R)
p.ZZ.Mul(&p.ZZ, &PP)
p.ZZZ.Mul(&p.ZZZ, &PPP)
return p
}
// doubleNegMixed works the same as doubleMixed, but negates q.Y.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-mdbl-2008-s-1
// ~Cost: 4M + 3S
func (p *g1JacExtended) doubleNegMixed(a *G1Affine) *g1JacExtended {
var U, V, W, S, M, t fp.Element
U.Double(&a.Y)
U.Neg(&U)
V.Square(&U)
W.Mul(&U, &V)
S.Mul(&a.X, &V)
t.Square(&a.X)
M.Double(&t).
Add(&M, &t) // -> + A, but A=0 here
p.X.Square(&M)
t.Double(&S)
p.X.Sub(&p.X, &t)
t.Mul(&W, &a.Y)
p.Y.Sub(&S, &p.X).
Mul(&p.Y, &M).
Add(&p.Y, &t)
p.ZZ.Set(&V)
p.ZZZ.Set(&W)
return p
}
// doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1.
//
// https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-mdbl-2008-s-1
// ~Cost: 4M + 3S
func (p *g1JacExtended) doubleMixed(a *G1Affine) *g1JacExtended {
var U, V, W, S, M, t fp.Element
U.Double(&a.Y)
V.Square(&U)
W.Mul(&U, &V)
S.Mul(&a.X, &V)
t.Square(&a.X)
M.Double(&t).
Add(&M, &t) // -> + A, but A=0 here
p.X.Square(&M)
t.Double(&S)
p.X.Sub(&p.X, &t)
t.Mul(&W, &a.Y)
p.Y.Sub(&S, &p.X).
Mul(&p.Y, &M).
Sub(&p.Y, &t)
p.ZZ.Set(&V)
p.ZZZ.Set(&W)
return p
}
// BatchJacobianToAffineG1 converts points in Jacobian coordinates to Affine coordinates
// performing a single field inversion using the Montgomery batch inversion trick.
func BatchJacobianToAffineG1(points []G1Jac) []G1Affine {
result := make([]G1Affine, len(points))
zeroes := make([]bool, len(points))
accumulator := fp.One()
// batch invert all points[].Z coordinates with Montgomery batch inversion trick
// (stores points[].Z^-1 in result[i].X to avoid allocating a slice of fr.Elements)
for i := 0; i < len(points); i++ {
if points[i].Z.IsZero() {
zeroes[i] = true
continue
}
result[i].X = accumulator
accumulator.Mul(&accumulator, &points[i].Z)
}
var accInverse fp.Element
accInverse.Inverse(&accumulator)
for i := len(points) - 1; i >= 0; i-- {
if zeroes[i] {
// do nothing, (X=0, Y=0) is infinity point in affine
continue
}
result[i].X.Mul(&result[i].X, &accInverse)
accInverse.Mul(&accInverse, &points[i].Z)
}
// batch convert to affine.
parallel.Execute(len(points), func(start, end int) {
for i := start; i < end; i++ {
if zeroes[i] {
// do nothing, (X=0, Y=0) is infinity point in affine
continue
}
var a, b fp.Element
a = result[i].X
b.Square(&a)
result[i].X.Mul(&points[i].X, &b)
result[i].Y.Mul(&points[i].Y, &b).
Mul(&result[i].Y, &a)
}
})
return result
}
// BatchScalarMultiplicationG1 multiplies the same base by all scalars
// and return resulting points in affine coordinates
// uses a simple windowed-NAF-like multiplication algorithm.
func BatchScalarMultiplicationG1(base *G1Affine, scalars []fr.Element) []G1Affine {
// approximate cost in group ops is
// cost = 2^{c-1} + n(scalar.nbBits+nbChunks)
nbPoints := uint64(len(scalars))
min := ^uint64(0)
bestC := 0
for c := 2; c <= 16; c++ {
cost := uint64(1 << (c - 1)) // pre compute the table
nbChunks := computeNbChunks(uint64(c))
cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add
if cost < min {
min = cost
bestC = c
}
}
c := uint64(bestC) // window size
nbChunks := int(computeNbChunks(c))
// last window may be slightly larger than c; in which case we need to compute one
// extra element in the baseTable
maxC := lastC(c)
if c > maxC {
maxC = c
}
// precompute all powers of base for our window
// note here that if performance is critical, we can implement as in the msmX methods
// this allocation to be on the stack
baseTable := make([]G1Jac, (1 << (maxC - 1)))
baseTable[0].FromAffine(base)
for i := 1; i < len(baseTable); i++ {
baseTable[i] = baseTable[i-1]
baseTable[i].AddMixed(base)
}
// convert our base exp table into affine to use AddMixed
baseTableAff := BatchJacobianToAffineG1(baseTable)
toReturn := make([]G1Jac, len(scalars))
// partition the scalars into digits
digits, _ := partitionScalars(scalars, c, runtime.NumCPU())
// for each digit, take value in the base table, double it c time, voilà.
parallel.Execute(len(scalars), func(start, end int) {
var p G1Jac
for i := start; i < end; i++ {
p.Set(&g1Infinity)
for chunk := nbChunks - 1; chunk >= 0; chunk-- {
if chunk != nbChunks-1 {
for j := uint64(0); j < c; j++ {
p.DoubleAssign()
}
}
offset := chunk * len(scalars)
digit := digits[i+offset]
if digit == 0 {
continue
}
// if msbWindow bit is set, we need to subtract
if digit&1 == 0 {
// add
p.AddMixed(&baseTableAff[(digit>>1)-1])
} else {
// sub
t := baseTableAff[digit>>1]
t.Neg(&t)
p.AddMixed(&t)
}
}
// set our result point
toReturn[i] = p
}
})
toReturnAff := BatchJacobianToAffineG1(toReturn)
return toReturnAff
}
// batchAddG1Affine adds affine points using the Montgomery batch inversion trick.
// Special cases (doubling, infinity) must be filtered out before this call.
func batchAddG1Affine[TP pG1Affine, TPP ppG1Affine, TC cG1Affine](R *TPP, P *TP, batchSize int) {
var lambda, lambdain TC
// from https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
// affine point addition formula
// R(X1, Y1) + P(X2, Y2) = Q(X3, Y3)
// λ = (Y2 - Y1) / (X2 - X1)
// X3 = λ² - (X1 + X2)
// Y3 = λ * (X1 - X3) - Y1
// first we compute the 1 / (X2 - X1) for all points using Montgomery batch inversion trick
// X2 - X1
for j := 0; j < batchSize; j++ {
lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X)
}
// montgomery batch inversion;
// lambda[0] = 1 / (P[0].X - R[0].X)
// lambda[1] = 1 / (P[1].X - R[1].X)
// ...
{
var accumulator fp.Element
lambda[0].SetOne()
accumulator.Set(&lambdain[0])
for i := 1; i < batchSize; i++ {
lambda[i] = accumulator
accumulator.Mul(&accumulator, &lambdain[i])
}
accumulator.Inverse(&accumulator)
for i := batchSize - 1; i > 0; i-- {
lambda[i].Mul(&lambda[i], &accumulator)
accumulator.Mul(&accumulator, &lambdain[i])
}
lambda[0].Set(&accumulator)
}
var t fp.Element
var Q G1Affine
for j := 0; j < batchSize; j++ {
// λ = (Y2 - Y1) / (X2 - X1)
t.Sub(&(*P)[j].Y, &(*R)[j].Y)
lambda[j].Mul(&lambda[j], &t)
// X3 = λ² - (X1 + X2)
Q.X.Square(&lambda[j])
Q.X.Sub(&Q.X, &(*R)[j].X)
Q.X.Sub(&Q.X, &(*P)[j].X)
// Y3 = λ * (X1 - X3) - Y1
t.Sub(&(*R)[j].X, &Q.X)
Q.Y.Mul(&lambda[j], &t)
Q.Y.Sub(&Q.Y, &(*R)[j].Y)
(*R)[j].Set(&Q)
}
}