- Added comprehensive bounds checking to prevent buffer overruns in multicall parsing - Implemented graduated validation system (Strict/Moderate/Permissive) to reduce false positives - Added LRU caching system for address validation with 10-minute TTL - Enhanced ABI decoder with missing Universal Router and Arbitrum-specific DEX signatures - Fixed duplicate function declarations and import conflicts across multiple files - Added error recovery mechanisms with multiple fallback strategies - Updated tests to handle new validation behavior for suspicious addresses - Fixed parser test expectations for improved validation system - Applied gofmt formatting fixes to ensure code style compliance - Fixed mutex copying issues in monitoring package by introducing MetricsSnapshot - Resolved critical security vulnerabilities in heuristic address extraction - Progress: Updated TODO audit from 10% to 35% complete 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
245 lines
6.1 KiB
Go
245 lines
6.1 KiB
Go
package security
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/rand"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/stretchr/testify/assert"
|
|
"github.com/stretchr/testify/require"
|
|
)
|
|
|
|
func TestEnhancedClearPrivateKey(t *testing.T) {
|
|
// Generate test key
|
|
key, err := ecdsa.GenerateKey(crypto.S256(), rand.Reader)
|
|
require.NoError(t, err)
|
|
require.NotNil(t, key)
|
|
require.NotNil(t, key.D)
|
|
|
|
// Store original values for verification
|
|
originalD := new(big.Int).Set(key.D)
|
|
originalX := new(big.Int).Set(key.PublicKey.X)
|
|
originalY := new(big.Int).Set(key.PublicKey.Y)
|
|
|
|
// Verify key has valid data before clearing
|
|
assert.True(t, key.D.Sign() != 0)
|
|
assert.True(t, key.PublicKey.X.Sign() != 0)
|
|
assert.True(t, key.PublicKey.Y.Sign() != 0)
|
|
|
|
// Clear the key
|
|
clearPrivateKey(key)
|
|
|
|
// Verify that the key data is effectively cleared
|
|
assert.Nil(t, key.D, "D should be nil after clearing")
|
|
assert.Nil(t, key.PublicKey.X, "X should be nil after clearing")
|
|
assert.Nil(t, key.PublicKey.Y, "Y should be nil after clearing")
|
|
assert.Nil(t, key.PublicKey.Curve, "Curve should be nil after clearing")
|
|
|
|
// Verify original values were actually non-zero
|
|
assert.True(t, originalD.Sign() != 0, "Original D should have been non-zero")
|
|
assert.True(t, originalX.Sign() != 0, "Original X should have been non-zero")
|
|
assert.True(t, originalY.Sign() != 0, "Original Y should have been non-zero")
|
|
}
|
|
|
|
func TestClearPrivateKeyNil(t *testing.T) {
|
|
// Test that clearing a nil key doesn't panic
|
|
clearPrivateKey(nil)
|
|
// Should complete without error
|
|
}
|
|
|
|
func TestClearPrivateKeyPartiallyNil(t *testing.T) {
|
|
// Test key with some nil components
|
|
key := &ecdsa.PrivateKey{}
|
|
|
|
// Should not panic with nil components
|
|
clearPrivateKey(key)
|
|
|
|
// Test with only D set
|
|
key.D = big.NewInt(12345)
|
|
clearPrivateKey(key)
|
|
assert.Nil(t, key.D)
|
|
}
|
|
|
|
func TestSecureClearBigInt(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
value *big.Int
|
|
}{
|
|
{
|
|
name: "small positive value",
|
|
value: big.NewInt(12345),
|
|
},
|
|
{
|
|
name: "large positive value",
|
|
value: new(big.Int).SetBytes([]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}),
|
|
},
|
|
{
|
|
name: "negative value",
|
|
value: big.NewInt(-9876543210),
|
|
},
|
|
{
|
|
name: "zero value",
|
|
value: big.NewInt(0),
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
// Create a copy to verify original was non-zero if applicable
|
|
original := new(big.Int).Set(tt.value)
|
|
|
|
// Clear the value
|
|
secureClearBigInt(tt.value)
|
|
|
|
// Verify it's cleared to zero
|
|
assert.True(t, tt.value.Sign() == 0, "big.Int should be zero after clearing")
|
|
assert.Equal(t, 0, tt.value.Cmp(big.NewInt(0)), "big.Int should equal zero")
|
|
|
|
// Verify original wasn't zero (except for zero test case)
|
|
if tt.name != "zero value" {
|
|
assert.True(t, original.Sign() != 0, "Original value should have been non-zero")
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestSecureClearBigIntNil(t *testing.T) {
|
|
// Test that clearing nil doesn't panic
|
|
secureClearBigInt(nil)
|
|
// Should complete without error
|
|
}
|
|
|
|
func TestSecureClearBytes(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
data []byte
|
|
}{
|
|
{
|
|
name: "small byte slice",
|
|
data: []byte{0x01, 0x02, 0x03, 0x04},
|
|
},
|
|
{
|
|
name: "large byte slice",
|
|
data: make([]byte, 1024),
|
|
},
|
|
{
|
|
name: "empty byte slice",
|
|
data: []byte{},
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
// Fill with non-zero data for large slice
|
|
if len(tt.data) > 4 {
|
|
for i := range tt.data {
|
|
tt.data[i] = byte(i % 256)
|
|
}
|
|
}
|
|
|
|
// Store original to verify it had data
|
|
original := make([]byte, len(tt.data))
|
|
copy(original, tt.data)
|
|
|
|
// Clear the data
|
|
secureClearBytes(tt.data)
|
|
|
|
// Verify all bytes are zero
|
|
for i, b := range tt.data {
|
|
assert.Equal(t, byte(0), b, "Byte at index %d should be zero", i)
|
|
}
|
|
|
|
// For non-empty slices, verify original had some non-zero data
|
|
if len(original) > 0 && len(original) <= 4 {
|
|
hasNonZero := false
|
|
for _, b := range original {
|
|
if b != 0 {
|
|
hasNonZero = true
|
|
break
|
|
}
|
|
}
|
|
if len(original) > 0 && tt.name != "empty byte slice" {
|
|
assert.True(t, hasNonZero, "Original data should have had non-zero bytes")
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestMemorySecurityIntegration(t *testing.T) {
|
|
// Test the complete workflow of key generation, usage, and clearing
|
|
|
|
// Generate multiple keys
|
|
keys := make([]*ecdsa.PrivateKey, 10)
|
|
for i := range keys {
|
|
key, err := ecdsa.GenerateKey(crypto.S256(), rand.Reader)
|
|
require.NoError(t, err)
|
|
keys[i] = key
|
|
}
|
|
|
|
// Verify all keys are valid
|
|
for i, key := range keys {
|
|
assert.NotNil(t, key.D, "Key %d D should not be nil", i)
|
|
assert.True(t, key.D.Sign() != 0, "Key %d D should not be zero", i)
|
|
}
|
|
|
|
// Clear all keys
|
|
for i, key := range keys {
|
|
clearPrivateKey(key)
|
|
|
|
// Verify clearing worked
|
|
assert.Nil(t, key.D, "Key %d D should be nil after clearing", i)
|
|
assert.Nil(t, key.PublicKey.X, "Key %d X should be nil after clearing", i)
|
|
assert.Nil(t, key.PublicKey.Y, "Key %d Y should be nil after clearing", i)
|
|
}
|
|
}
|
|
|
|
func TestConcurrentKeyClearingOperation(t *testing.T) {
|
|
// Test concurrent clearing operations
|
|
const numKeys = 50
|
|
const numWorkers = 10
|
|
|
|
keys := make([]*ecdsa.PrivateKey, numKeys)
|
|
|
|
// Generate keys
|
|
for i := range keys {
|
|
key, err := ecdsa.GenerateKey(crypto.S256(), rand.Reader)
|
|
require.NoError(t, err)
|
|
keys[i] = key
|
|
}
|
|
|
|
// Channel to coordinate workers
|
|
keysChan := make(chan *ecdsa.PrivateKey, numKeys)
|
|
|
|
// Send keys to channel
|
|
for _, key := range keys {
|
|
keysChan <- key
|
|
}
|
|
close(keysChan)
|
|
|
|
// Start workers to clear keys concurrently
|
|
done := make(chan bool, numWorkers)
|
|
for i := 0; i < numWorkers; i++ {
|
|
go func() {
|
|
defer func() { done <- true }()
|
|
for key := range keysChan {
|
|
clearPrivateKey(key)
|
|
}
|
|
}()
|
|
}
|
|
|
|
// Wait for all workers to complete
|
|
for i := 0; i < numWorkers; i++ {
|
|
<-done
|
|
}
|
|
|
|
// Verify all keys are cleared
|
|
for i, key := range keys {
|
|
assert.Nil(t, key.D, "Key %d D should be nil after concurrent clearing", i)
|
|
assert.Nil(t, key.PublicKey.X, "Key %d X should be nil after concurrent clearing", i)
|
|
assert.Nil(t, key.PublicKey.Y, "Key %d Y should be nil after concurrent clearing", i)
|
|
}
|
|
}
|