2.0 KiB
2.0 KiB
Optimize Mathematical Performance
Optimize the performance of the following mathematical function in the MEV bot: $ARGUMENTS
Performance Optimization Strategy:
1. Profiling and Measurement
# CPU profiling for mathematical functions
go tool pprof http://localhost:9090/debug/pprof/profile?seconds=30
# Memory profiling for mathematical calculations
go tool pprof http://localhost:9090/debug/pprof/heap
# Benchmark testing for mathematical functions
go test -bench=. -benchmem ./pkg/uniswap/...
2. Optimization Areas
Precision Handling Optimization
- Uint256 arithmetic optimization
- Object pooling for frequent calculations
- Minimize memory allocations in hot paths
- Efficient conversion between data types
Algorithm Optimization
- Mathematical formula simplification
- Lookup table implementation for repeated calculations
- Caching strategies for expensive computations
- Parallel processing opportunities
Memory Optimization
- Pre-allocation of slices and buffers
- Object pooling for mathematical objects
- Minimize garbage collection pressure
- Efficient data structure selection
3. MEV Bot Specific Optimizations
Uniswap V3 Pricing Functions
- sqrtPriceX96 to price conversion optimization
- Tick calculation performance improvements
- Liquidity-based calculation efficiency
- Price impact computation optimization
Arbitrage Calculations
- Profit calculation optimization
- Cross-pool comparison performance
- Gas estimation accuracy and speed
- Multi-hop arbitrage efficiency
Implementation Guidelines:
- Measure before optimizing (baseline metrics)
- Focus on bottlenecks identified through profiling
- Maintain mathematical precision while improving performance
- Add performance tests for regressions
- Document optimization strategies and results
Deliverables:
- Performance benchmark results (before/after)
- Optimized code with maintained precision
- Performance monitoring enhancements
- Optimization documentation
- Regression test suite