Files
mev-beta/test/stress/benchmarks.go
Krypto Kajun 850223a953 fix(multicall): resolve critical multicall parsing corruption issues
- Added comprehensive bounds checking to prevent buffer overruns in multicall parsing
- Implemented graduated validation system (Strict/Moderate/Permissive) to reduce false positives
- Added LRU caching system for address validation with 10-minute TTL
- Enhanced ABI decoder with missing Universal Router and Arbitrum-specific DEX signatures
- Fixed duplicate function declarations and import conflicts across multiple files
- Added error recovery mechanisms with multiple fallback strategies
- Updated tests to handle new validation behavior for suspicious addresses
- Fixed parser test expectations for improved validation system
- Applied gofmt formatting fixes to ensure code style compliance
- Fixed mutex copying issues in monitoring package by introducing MetricsSnapshot
- Resolved critical security vulnerabilities in heuristic address extraction
- Progress: Updated TODO audit from 10% to 35% complete

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-17 00:12:55 -05:00

819 lines
25 KiB
Go

//go:build stress
// +build stress
package stress_test
import (
"context"
"fmt"
"math/big"
"math/rand"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/holiman/uint256"
"github.com/fraktal/mev-beta/internal/logger"
"github.com/fraktal/mev-beta/pkg/arbitrum"
"github.com/fraktal/mev-beta/pkg/events"
"github.com/fraktal/mev-beta/pkg/pools"
"github.com/fraktal/mev-beta/pkg/profitcalc"
"github.com/fraktal/mev-beta/pkg/scanner/market"
"github.com/fraktal/mev-beta/pkg/trading"
)
// BenchmarkStressTestSuite runs benchmark tests for the stress test suite
func BenchmarkStressTestSuite(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
// Run benchmark tests
b.Run("MarketScannerStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunMarketScannerStressTest()
if !result.Passed {
b.Fatalf("Market scanner stress test failed: %v", result.Errors)
}
}
})
b.Run("SwapAnalyzerStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunSwapAnalyzerStressTest()
if !result.Passed {
b.Fatalf("Swap analyzer stress test failed: %v", result.Errors)
}
}
})
b.Run("PoolDiscoveryStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunPoolDiscoveryStressTest()
if !result.Passed {
b.Fatalf("Pool discovery stress test failed: %v", result.Errors)
}
}
})
b.Run("ArbitrageEngineStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunArbitrageEngineStressTest()
if !result.Passed {
b.Fatalf("Arbitrage engine stress test failed: %v", result.Errors)
}
}
})
b.Run("EventProcessingStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunEventProcessingStressTest()
if !result.Passed {
b.Fatalf("Event processing stress test failed: %v", result.Errors)
}
}
})
b.Run("ProfitCalculationStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunProfitCalculationStressTest()
if !result.Passed {
b.Fatalf("Profit calculation stress test failed: %v", result.Errors)
}
}
})
b.Run("ConcurrencyStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunConcurrencyStressTest()
if !result.Passed {
b.Fatalf("Concurrency stress test failed: %v", result.Errors)
}
}
})
b.Run("MemoryStressTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunMemoryStressTest()
if !result.Passed {
b.Fatalf("Memory stress test failed: %v", result.Errors)
}
}
})
b.Run("PerformanceRegressionTest", func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
result := suite.RunPerformanceRegressionTest()
if !result.Passed {
b.Fatalf("Performance regression test failed: %v", result.Errors)
}
}
})
}
// BenchmarkConcurrentMarketScanning benchmarks concurrent market scanning performance
func BenchmarkConcurrentMarketScanning(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
// Generate test data
testPools := suite.generateTestPools(1000)
testEvents := suite.generateTestEvents(10000)
b.ResetTimer()
b.Run("ConcurrentPoolScanning", func(b *testing.B) {
for i := 0; i < b.N; i++ {
var wg sync.WaitGroup
errorCount := int64(0)
// Process pools concurrently
for _, pool := range testPools {
wg.Add(1)
go func(p *market.CachedData) {
defer wg.Done()
// Simulate pool scanning
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock pool scanning operation
err := suite.mockPoolScan(ctx, p)
if err != nil {
atomic.AddInt64(&errorCount, 1)
}
}(pool)
}
// Wait for all operations to complete
wg.Wait()
if errorCount > 0 {
b.Fatalf("Concurrent pool scanning failed with %d errors", errorCount)
}
}
})
b.Run("ConcurrentEventProcessing", func(b *testing.B) {
for i := 0; i < b.N; i++ {
var wg sync.WaitGroup
errorCount := int64(0)
// Process events concurrently
for _, event := range testEvents {
wg.Add(1)
go func(e events.Event) {
defer wg.Done()
// Simulate event processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock event processing operation
err := suite.mockEventProcessing(ctx, e)
if err != nil {
atomic.AddInt64(&errorCount, 1)
}
}(event)
}
// Wait for all operations to complete
wg.Wait()
if errorCount > 0 {
b.Fatalf("Concurrent event processing failed with %d errors", errorCount)
}
}
})
}
// BenchmarkMemoryAllocation benchmarks memory allocation performance
func BenchmarkMemoryAllocation(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
b.ResetTimer()
b.Run("LargeDataStructures", func(b *testing.B) {
for i := 0; i < b.N; i++ {
// Generate large test data sets
dataSets := suite.generateLargeTestDataSets(10000)
// Process large data sets
var wg sync.WaitGroup
errorCount := int64(0)
for _, dataSet := range dataSets {
wg.Add(1)
go func(ds []*market.CachedData) {
defer wg.Done()
// Simulate memory-intensive processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock memory-intensive operation
err := suite.mockMemoryIntensiveProcessing(ctx, ds)
if err != nil {
atomic.AddInt64(&errorCount, 1)
}
}(dataSet)
}
// Wait for all operations to complete
wg.Wait()
if errorCount > 0 {
b.Fatalf("Memory-intensive processing failed with %d errors", errorCount)
}
}
})
}
// BenchmarkCPUUtilization benchmarks CPU utilization performance
func BenchmarkCPUUtilization(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
b.ResetTimer()
b.Run("CPUIntensiveCalculations", func(b *testing.B) {
for i := 0; i < b.N; i++ {
// Generate test data
testProfits := suite.generateTestProfits(1000)
// Process profits concurrently
var wg sync.WaitGroup
errorCount := int64(0)
for _, profit := range testProfits {
wg.Add(1)
go func(p *arbitrum.ArbitrageOpportunityDetailed) {
defer wg.Done()
// Simulate CPU-intensive calculations
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock profit calculation operation
err := suite.mockProfitCalculation(ctx, p)
if err != nil {
atomic.AddInt64(&errorCount, 1)
}
}(profit)
}
// Wait for all operations to complete
wg.Wait()
if errorCount > 0 {
b.Fatalf("CPU-intensive calculations failed with %d errors", errorCount)
}
}
})
}
// BenchmarkNetworkLatency benchmarks network latency handling
func BenchmarkNetworkLatency(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
b.ResetTimer()
b.Run("NetworkRequestHandling", func(b *testing.B) {
for i := 0; i < b.N; i++ {
// Generate test data
testPools := suite.generateTestPools(100)
// Process pools with simulated network delays
var wg sync.WaitGroup
errorCount := int64(0)
for _, pool := range testPools {
wg.Add(1)
go func(p *market.CachedData) {
defer wg.Done()
// Simulate network delay
time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)
// Simulate pool scanning with network request
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock pool scanning operation
err := suite.mockPoolScan(ctx, p)
if err != nil {
atomic.AddInt64(&errorCount, 1)
}
}(pool)
}
// Wait for all operations to complete
wg.Wait()
if errorCount > 0 {
b.Fatalf("Network request handling failed with %d errors", errorCount)
}
}
})
}
// BenchmarkErrorHandling benchmarks error handling performance
func BenchmarkErrorHandling(b *testing.B) {
// Create test logger
log := logger.New("warn", "text", "") // Use warn level to minimize logging overhead
// Create test components
protocolRegistry := arbitrum.NewArbitrumProtocolRegistry(log)
poolCache := pools.NewPoolCache(10000, time.Hour)
marketDiscovery := market.NewMarketDiscovery(nil, log, "")
strategyEngine := arbitrum.NewMEVStrategyEngine(log, protocolRegistry)
profitCalculator := profitcalc.NewProfitCalculatorWithClient(log, nil)
mevAnalyzer := arbitrum.NewMEVAnalyzer(log)
slippageProtector := trading.NewSlippageProtection(nil, log)
capitalOptimizer := arbitrum.NewCapitalOptimizer(log)
profitTracker := arbitrum.NewProfitabilityTracker(log)
// Create stress test suite
suite := NewStressTestSuite(
log,
protocolRegistry,
poolCache,
marketDiscovery,
strategyEngine,
profitCalculator,
mevAnalyzer,
slippageProtector,
capitalOptimizer,
profitTracker,
)
b.ResetTimer()
b.Run("ErrorHandlingPerformance", func(b *testing.B) {
for i := 0; i < b.N; i++ {
// Generate test data with errors
testEvents := suite.generateTestEventsWithErrorRate(1000, 0.05) // 5% error rate
// Process events with error handling
var wg sync.WaitGroup
errorCount := int64(0)
successCount := int64(0)
for _, event := range testEvents {
wg.Add(1)
go func(e events.Event) {
defer wg.Done()
// Simulate event processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock event processing operation
err := suite.mockEventProcessing(ctx, e)
if err != nil {
atomic.AddInt64(&errorCount, 1)
suite.recordError(fmt.Sprintf("EventProcessingError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}(event)
}
// Wait for all operations to complete
wg.Wait()
// Validate error handling worked correctly
if errorCount+successCount != int64(len(testEvents)) {
b.Fatalf("Error handling count mismatch: %d errors + %d successes != %d total", errorCount, successCount, len(testEvents))
}
}
})
}
// generateTestEventsWithErrorRate generates test events with a specific error rate
func (suite *StressTestSuite) generateTestEventsWithErrorRate(count int, errorRate float64) []events.Event {
events := suite.generateTestEvents(count)
// Mark some events to cause errors based on error rate
errorEvents := int(float64(count) * errorRate)
for i := 0; i < errorEvents && i < count; i++ {
// Mark event to cause error
events[i].Type = events.Unknown // Invalid event type to cause processing errors
}
return events
}
// generateTestPools generates test pools for benchmarking
func (suite *StressTestSuite) generateTestPools(count int) []*market.CachedData {
pools := make([]*market.CachedData, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xff970a61a04b1ca14834a43f5de4533ebddb5cc8")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
for i := 0; i < count; i++ {
// Select random tokens for the pool
token0 := tokens[rand.Intn(len(tokens))]
token1 := tokens[rand.Intn(len(tokens))]
for token0 == token1 {
token1 = tokens[rand.Intn(len(tokens))]
}
// Create deterministic pool address based on index
poolAddr := common.BigToAddress(big.NewInt(int64(i + 1000000)))
// Generate deterministic liquidity and price values
liquidity := uint256.NewInt(uint64(1000000 + i*1000)) // Increasing liquidity
sqrtPrice := uint256.NewInt(uint64(1000000000000000000 + i*100000000000000)) // Increasing price
pools[i] = &market.CachedData{
Address: poolAddr,
Token0: token0,
Token1: token1,
Fee: int64(3000 + (i%4)*500), // Varying fees (0.05%, 0.3%, 0.5%, 1%)
Liquidity: liquidity,
SqrtPriceX96: sqrtPrice,
Tick: int(74959 + i), // Varying ticks
TickSpacing: 60,
Protocol: fmt.Sprintf("uniswap_v%d", 2+(i%2)), // Alternating V2/V3
LastUpdated: time.Now(),
}
}
return pools
}
// generateTestEvents generates test events for benchmarking
func (suite *StressTestSuite) generateTestEvents(count int) []events.Event {
events := make([]events.Event, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xff970a61a04b1ca14834a43f5de4533ebddb5cc8")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
protocols := []string{"uniswap_v2", "uniswap_v3", "sushiswap", "camelot_v2", "camelot_v3", "balancer_v2", "curve", "algebra"}
for i := 0; i < count; i++ {
// Select random tokens for the event
token0 := tokens[rand.Intn(len(tokens))]
token1 := tokens[rand.Intn(len(tokens))]
for token0 == token1 {
token1 = tokens[rand.Intn(len(tokens))]
}
// Select random protocol
protocol := protocols[rand.Intn(len(protocols))]
// Create deterministic pool address based on index
poolAddr := common.BigToAddress(big.NewInt(int64(i + 2000000)))
// Generate deterministic amounts
amount0 := big.NewInt(int64(100000000000000000 + int64(i)*10000000000000)) // Varying amounts
amount1 := big.NewInt(int64(200000000000000000 + int64(i)*20000000000000)) // Varying amounts
// Generate deterministic liquidity and price values
liquidity := uint256.NewInt(uint64(500000 + i*500)) // Increasing liquidity
sqrtPrice := uint256.NewInt(uint64(500000000000000000 + i*50000000000000)) // Increasing price
events[i] = events.Event{
Timestamp: time.Now(),
BlockNumber: uint64(10000000 + i),
TransactionHash: common.BigToHash(big.NewInt(int64(i + 3000000))),
LogIndex: uint(i % 100),
Type: events.Swap, // Default to swap events
Protocol: protocol,
PoolAddress: poolAddr,
Token0: token0,
Token1: token1,
Amount0: amount0,
Amount1: amount1,
Liquidity: liquidity,
SqrtPriceX96: sqrtPrice,
Tick: int32(74959 + i%1000), // Varying ticks
}
}
return events
}
// generateTestProfits generates test profits for benchmarking
func (suite *StressTestSuite) generateTestProfits(count int) []*arbitrum.ArbitrageOpportunityDetailed {
profits := make([]*arbitrum.ArbitrageOpportunityDetailed, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xff970a61a04b1ca14834a43f5de4533ebddb5cc8")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
exchanges := []string{"uniswap_v2", "uniswap_v3", "sushiswap", "camelot_v2", "camelot_v3", "balancer_v2", "curve", "algebra"}
for i := 0; i < count; i++ {
// Select random tokens for the arbitrage
tokenIn := tokens[rand.Intn(len(tokens))]
tokenOut := tokens[rand.Intn(len(tokens))]
for tokenIn == tokenOut {
tokenOut = tokens[rand.Intn(len(tokens))]
}
// Select random exchanges
exchangeA := exchanges[rand.Intn(len(exchanges))]
exchangeB := exchanges[rand.Intn(len(exchanges))]
for exchangeA == exchangeB {
exchangeB = exchanges[rand.Intn(len(exchanges))]
}
// Create deterministic pool addresses based on index
poolA := common.BigToAddress(big.NewInt(int64(i + 4000000)))
poolB := common.BigToAddress(big.NewInt(int64(i + 5000000)))
// Generate deterministic amounts
amountIn := big.NewInt(int64(100000000000000000 + int64(i)*10000000000000)) // Varying amounts
expectedAmountOut := big.NewInt(int64(105000000000000000 + int64(i)*10500000000000)) // 5% profit
actualAmountOut := big.NewInt(int64(104000000000000000 + int64(i)*10400000000000)) // 4% profit
profit := big.NewInt(int64(4000000000000000 + int64(i)*400000000000)) // Varying profits
gasCost := big.NewInt(int64(1000000000000000 + int64(i)*100000000000)) // Varying gas costs
netProfit := new(big.Int).Sub(profit, gasCost)
profits[i] = &arbitrum.ArbitrageOpportunityDetailed{
ID: fmt.Sprintf("arb_%d_%d", time.Now().Unix(), i+1000000),
Type: "arbitrage",
TokenIn: tokenIn,
TokenOut: tokenOut,
AmountIn: amountIn,
ExpectedAmountOut: expectedAmountOut,
ActualAmountOut: actualAmountOut,
Profit: profit,
ProfitUSD: 50.0 + float64(i%1000)*0.05, // Varying USD profits
ProfitMargin: 0.04 + float64(i%100)*0.0001, // Varying margins (4-5%)
GasCost: gasCost,
NetProfit: netProfit,
ExchangeA: exchangeA,
ExchangeB: exchangeB,
PoolA: poolA,
PoolB: poolB,
PriceImpactA: 0.005 + float64(i%1000)*0.000005, // Varying price impacts
PriceImpactB: 0.003 + float64(i%1000)*0.000003, // Varying price impacts
CapitalRequired: 100.0 + float64(i%10000)*0.01, // Varying capital requirements
GasCostUSD: 5.0 + float64(i%100)*0.05, // Varying gas costs in USD
Confidence: 0.8 + float64(i%20)*0.01, // Varying confidence (80-100%)
RiskScore: 0.2 + float64(i%50)*0.01, // Varying risk scores (20-70%)
ExecutionTime: time.Duration(15+i%10) * time.Second, // Varying execution times
Timestamp: time.Now(),
}
}
return profits
}
// generateLargeTestDataSets generates large test data sets for memory benchmarking
func (suite *StressTestSuite) generateLargeTestDataSets(count int) [][]*market.CachedData {
// Create batches of test data
batchSize := 1000
batchCount := count / batchSize
if count%batchSize > 0 {
batchCount++
}
dataSets := make([][]*market.CachedData, batchCount)
for i := 0; i < batchCount; i++ {
dataSets[i] = suite.generateTestPools(batchSize)
}
return dataSets
}
// mockPoolScan simulates pool scanning for benchmarking
func (suite *StressTestSuite) mockPoolScan(ctx context.Context, pool *market.CachedData) error {
atomic.AddUint64(&suite.metrics.totalPoolsScanned, 1)
atomic.AddUint64(&suite.metrics.totalTestsRun, 1)
// Simulate work
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(time.Duration(rand.Intn(10)) * time.Millisecond):
// Simulate occasional errors
if rand.Intn(1000) < 5 { // 0.5% error rate
atomic.AddUint64(&suite.metrics.testsFailed, 1)
return fmt.Errorf("simulated pool scan error")
}
atomic.AddUint64(&suite.metrics.testsPassed, 1)
return nil
}
}
// mockEventProcessing simulates event processing for benchmarking
func (suite *StressTestSuite) mockEventProcessing(ctx context.Context, event events.Event) error {
atomic.AddUint64(&suite.metrics.totalTransactions, 1)
atomic.AddUint64(&suite.metrics.totalTestsRun, 1)
// Simulate work
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(time.Duration(rand.Intn(5)) * time.Millisecond):
// Simulate occasional errors
if rand.Intn(1000) < 3 { // 0.3% error rate
atomic.AddUint64(&suite.metrics.testsFailed, 1)
return fmt.Errorf("simulated event processing error")
}
atomic.AddUint64(&suite.metrics.testsPassed, 1)
return nil
}
}
// mockMemoryIntensiveProcessing simulates memory-intensive processing for benchmarking
func (suite *StressTestSuite) mockMemoryIntensiveProcessing(ctx context.Context, dataSet []*market.CachedData) error {
atomic.AddUint64(&suite.metrics.totalTestsRun, 1)
// Simulate memory-intensive work
// Create temporary data structures to consume memory
tempData := make([]*market.CachedData, len(dataSet))
copy(tempData, dataSet)
// Simulate work
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(time.Duration(rand.Intn(20)) * time.Millisecond):
// Clear temporary data
tempData = nil
// Simulate occasional errors
if rand.Intn(1000) < 8 { // 0.8% error rate
atomic.AddUint64(&suite.metrics.testsFailed, 1)
return fmt.Errorf("simulated memory-intensive processing error")
}
atomic.AddUint64(&suite.metrics.testsPassed, 1)
return nil
}
}
// mockProfitCalculation simulates profit calculation for benchmarking
func (suite *StressTestSuite) mockProfitCalculation(ctx context.Context, profit *arbitrum.ArbitrageOpportunityDetailed) error {
atomic.AddUint64(&suite.metrics.totalArbitrageOps, 1)
atomic.AddUint64(&suite.metrics.totalTestsRun, 1)
// Simulate work
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(time.Duration(rand.Intn(15)) * time.Millisecond):
// Simulate occasional errors
if rand.Intn(1000) < 6 { // 0.6% error rate
atomic.AddUint64(&suite.metrics.testsFailed, 1)
return fmt.Errorf("simulated profit calculation error")
}
atomic.AddUint64(&suite.metrics.testsPassed, 1)
return nil
}
}