Files
mev-beta/orig/.claude/commands/optimize-math.md
Administrator c54c569f30 refactor: move all remaining files to orig/ directory
Completed clean root directory structure:
- Root now contains only: .git, .env, docs/, orig/
- Moved all remaining files and directories to orig/:
  - Config files (.claude, .dockerignore, .drone.yml, etc.)
  - All .env variants (except active .env)
  - Git config (.gitconfig, .github, .gitignore, etc.)
  - Tool configs (.golangci.yml, .revive.toml, etc.)
  - Documentation (*.md files, @prompts)
  - Build files (Dockerfiles, Makefile, go.mod, go.sum)
  - Docker compose files
  - All source directories (scripts, tests, tools, etc.)
  - Runtime directories (logs, monitoring, reports)
  - Dependency files (node_modules, lib, cache)
  - Special files (--delete)

- Removed empty runtime directories (bin/, data/)

V2 structure is now clean:
- docs/planning/ - V2 planning documents
- orig/ - Complete V1 codebase preserved
- .env - Active environment config (not in git)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-10 10:53:05 +01:00

2.0 KiB

Optimize Mathematical Performance

Optimize the performance of the following mathematical function in the MEV bot: $ARGUMENTS

Performance Optimization Strategy:

1. Profiling and Measurement

# CPU profiling for mathematical functions
go tool pprof http://localhost:9090/debug/pprof/profile?seconds=30

# Memory profiling for mathematical calculations
go tool pprof http://localhost:9090/debug/pprof/heap

# Benchmark testing for mathematical functions
go test -bench=. -benchmem ./pkg/uniswap/...

2. Optimization Areas

Precision Handling Optimization

  • Uint256 arithmetic optimization
  • Object pooling for frequent calculations
  • Minimize memory allocations in hot paths
  • Efficient conversion between data types

Algorithm Optimization

  • Mathematical formula simplification
  • Lookup table implementation for repeated calculations
  • Caching strategies for expensive computations
  • Parallel processing opportunities

Memory Optimization

  • Pre-allocation of slices and buffers
  • Object pooling for mathematical objects
  • Minimize garbage collection pressure
  • Efficient data structure selection

3. MEV Bot Specific Optimizations

Uniswap V3 Pricing Functions

  • sqrtPriceX96 to price conversion optimization
  • Tick calculation performance improvements
  • Liquidity-based calculation efficiency
  • Price impact computation optimization

Arbitrage Calculations

  • Profit calculation optimization
  • Cross-pool comparison performance
  • Gas estimation accuracy and speed
  • Multi-hop arbitrage efficiency

Implementation Guidelines:

  • Measure before optimizing (baseline metrics)
  • Focus on bottlenecks identified through profiling
  • Maintain mathematical precision while improving performance
  • Add performance tests for regressions
  • Document optimization strategies and results

Deliverables:

  • Performance benchmark results (before/after)
  • Optimized code with maintained precision
  • Performance monitoring enhancements
  • Optimization documentation
  • Regression test suite