Files
mev-beta/test/stress/stress_test_suite.go
Krypto Kajun 850223a953 fix(multicall): resolve critical multicall parsing corruption issues
- Added comprehensive bounds checking to prevent buffer overruns in multicall parsing
- Implemented graduated validation system (Strict/Moderate/Permissive) to reduce false positives
- Added LRU caching system for address validation with 10-minute TTL
- Enhanced ABI decoder with missing Universal Router and Arbitrum-specific DEX signatures
- Fixed duplicate function declarations and import conflicts across multiple files
- Added error recovery mechanisms with multiple fallback strategies
- Updated tests to handle new validation behavior for suspicious addresses
- Fixed parser test expectations for improved validation system
- Applied gofmt formatting fixes to ensure code style compliance
- Fixed mutex copying issues in monitoring package by introducing MetricsSnapshot
- Resolved critical security vulnerabilities in heuristic address extraction
- Progress: Updated TODO audit from 10% to 35% complete

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-17 00:12:55 -05:00

1694 lines
56 KiB
Go

//go:build stress
// +build stress
package stress_test
import (
"context"
"fmt"
"math/big"
"math/rand"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/holiman/uint256"
"github.com/fraktal/mev-beta/internal/logger"
"github.com/fraktal/mev-beta/pkg/arbitrum"
"github.com/fraktal/mev-beta/pkg/events"
"github.com/fraktal/mev-beta/pkg/pools"
"github.com/fraktal/mev-beta/pkg/profitcalc"
"github.com/fraktal/mev-beta/pkg/scanner/market"
"github.com/fraktal/mev-beta/pkg/scanner/swap"
"github.com/fraktal/mev-beta/pkg/trading"
)
// StressTestSuite manages stress testing of MEV bot components
type StressTestSuite struct {
marketScanner *market.MarketScanner
swapAnalyzer *swap.SwapAnalyzer
logger *logger.Logger
protocolRegistry *arbitrum.ArbitrumProtocolRegistry
poolCache *pools.PoolCache
marketDiscovery *arbitrum.MarketDiscovery
strategyEngine *arbitrum.MEVStrategyEngine
profitCalculator *profitcalc.ProfitCalculator
mevAnalyzer *arbitrum.MEVAnalyzer
slippageProtector *trading.SlippageProtection
capitalOptimizer *arbitrum.CapitalOptimizer
profitTracker *arbitrum.ProfitabilityTracker
// Test metrics
metrics *StressTestMetrics
// Test configuration
config *StressTestConfig
// Concurrency control
wg sync.WaitGroup
mu sync.RWMutex
}
// StressTestMetrics tracks stress test metrics
type StressTestMetrics struct {
// Atomic counters for thread-safe metrics
totalTestsRun uint64
testsPassed uint64
testsFailed uint64
totalTransactions uint64
totalPoolsScanned uint64
totalArbitrageOps uint64
totalSwapEvents uint64
totalLiquidityEvents uint64
// Performance metrics
avgLatency time.Duration
maxLatency time.Duration
minLatency time.Duration
totalTestTime time.Duration
memoryAllocated uint64
cpuUtilization float64
// Error tracking
errors map[string]int
mu sync.RWMutex
}
// StressTestConfig configures stress testing parameters
type StressTestConfig struct {
// Test duration
TestDuration time.Duration
// Concurrency settings
ConcurrentWorkers int
MaxConcurrency int
// Load settings
TransactionsPerSecond int
PoolsToScan int
MaxTestSize int
// Performance thresholds
MaxLatency time.Duration
MinThroughput int // Transactions per second
MaxMemoryUsageMB int
MaxCPUPercentage float64
// Validation settings
ValidateResults bool
FailOnWarnings bool
LogLevel string
}
// StressTestResult represents the result of a stress test
type StressTestResult struct {
TestName string
Passed bool
Duration time.Duration
Transactions uint64
PoolsScanned uint64
ArbitrageOps uint64
SwapEvents uint64
LiquidityEvents uint64
AvgLatency time.Duration
MaxLatency time.Duration
MinLatency time.Duration
MemoryAllocated uint64
CPUUtilization float64
Errors map[string]int
Warnings []string
Recommendations []string
PerformanceScore float64
}
// NewStressTestSuite creates a new stress test suite
func NewStressTestSuite(
logger *logger.Logger,
protocolRegistry *arbitrum.ArbitrumProtocolRegistry,
poolCache *pools.PoolCache,
marketDiscovery *arbitrum.MarketDiscovery,
strategyEngine *arbitrum.MEVStrategyEngine,
profitCalculator *profitcalc.ProfitCalculator,
mevAnalyzer *arbitrum.MEVAnalyzer,
slippageProtector *trading.SlippageProtection,
capitalOptimizer *arbitrum.CapitalOptimizer,
profitTracker *arbitrum.ProfitabilityTracker,
) *StressTestSuite {
return &StressTestSuite{
logger: logger,
protocolRegistry: protocolRegistry,
poolCache: poolCache,
marketDiscovery: marketDiscovery,
strategyEngine: strategyEngine,
profitCalculator: profitCalculator,
mevAnalyzer: mevAnalyzer,
slippageProtector: slippageProtector,
capitalOptimizer: capitalOptimizer,
profitTracker: profitTracker,
metrics: &StressTestMetrics{
errors: make(map[string]int),
},
config: &StressTestConfig{
TestDuration: 5 * time.Minute,
ConcurrentWorkers: 10,
MaxConcurrency: 50,
TransactionsPerSecond: 1000,
PoolsToScan: 1000,
MaxTestSize: 10000,
MaxLatency: 100 * time.Millisecond,
MinThroughput: 500,
MaxMemoryUsageMB: 1024,
MaxCPUPercentage: 80.0,
ValidateResults: true,
FailOnWarnings: false,
LogLevel: "info",
},
}
}
// RunComprehensiveStressTests runs all stress tests
func (sts *StressTestSuite) RunComprehensiveStressTests() []*StressTestResult {
results := make([]*StressTestResult, 0)
// Run market scanner stress test
result := sts.RunMarketScannerStressTest()
results = append(results, result)
// Run swap analyzer stress test
result = sts.RunSwapAnalyzerStressTest()
results = append(results, result)
// Run pool discovery stress test
result = sts.RunPoolDiscoveryStressTest()
results = append(results, result)
// Run arbitrage engine stress test
result = sts.RunArbitrageEngineStressTest()
results = append(results, result)
// Run event processing stress test
result = sts.RunEventProcessingStressTest()
results = append(results, result)
// Run profit calculation stress test
result = sts.RunProfitCalculationStressTest()
results = append(results, result)
// Run concurrency stress test
result = sts.RunConcurrencyStressTest()
results = append(results, result)
// Run memory stress test
result = sts.RunMemoryStressTest()
results = append(results, result)
// Run performance regression test
result = sts.RunPerformanceRegressionTest()
results = append(results, result)
return results
}
// RunMarketScannerStressTest runs stress test for market scanner
func (sts *StressTestSuite) RunMarketScannerStressTest() *StressTestResult {
testName := "Market Scanner Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testPools := sts.generateTestPools(sts.config.PoolsToScan)
testEvents := sts.generateTestEvents(sts.config.TransactionsPerSecond * int(sts.config.TestDuration.Seconds()))
// Run concurrent market scanner tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testPools))
// Run pool scanning tests
for _, pool := range testPools {
sts.wg.Add(1)
go func(p *market.CachedData) {
defer sts.wg.Done()
// Simulate pool scanning
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock pool scanning operation
err := sts.mockPoolScan(ctx, p)
results <- err
}(pool)
}
// Run event processing tests
for _, event := range testEvents {
sts.wg.Add(1)
go func(e events.Event) {
defer sts.wg.Done()
// Simulate event processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock event processing operation
err := sts.mockEventProcessing(ctx, e)
results <- err
}(event)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("MarketScannerError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
Transactions: finalMetrics.totalTransactions - initialMetrics.totalTransactions,
PoolsScanned: finalMetrics.totalPoolsScanned - initialMetrics.totalPoolsScanned,
ArbitrageOps: finalMetrics.totalArbitrageOps - initialMetrics.totalArbitrageOps,
SwapEvents: finalMetrics.totalSwapEvents - initialMetrics.totalSwapEvents,
LiquidityEvents: finalMetrics.totalLiquidityEvents - initialMetrics.totalLiquidityEvents,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize pool scanning algorithms")
}
if int(result.Transactions/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d tx/sec < %d tx/sec", int(result.Transactions/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d transactions processed in %v", testName, result.Transactions, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunSwapAnalyzerStressTest runs stress test for swap analyzer
func (sts *StressTestSuite) RunSwapAnalyzerStressTest() *StressTestResult {
testName := "Swap Analyzer Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testEvents := sts.generateTestEvents(sts.config.TransactionsPerSecond * int(sts.config.TestDuration.Seconds()))
// Run concurrent swap analysis tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testEvents))
// Run swap analysis tests
for _, event := range testEvents {
sts.wg.Add(1)
go func(e events.Event) {
defer sts.wg.Done()
// Simulate swap analysis
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock swap analysis operation
err := sts.mockSwapAnalysis(ctx, e)
results <- err
}(event)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("SwapAnalyzerError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
Transactions: finalMetrics.totalTransactions - initialMetrics.totalTransactions,
SwapEvents: finalMetrics.totalSwapEvents - initialMetrics.totalSwapEvents,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize swap analysis algorithms")
}
if int(result.Transactions/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d tx/sec < %d tx/sec", int(result.Transactions/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d transactions analyzed in %v", testName, result.Transactions, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunPoolDiscoveryStressTest runs stress test for pool discovery
func (sts *StressTestSuite) RunPoolDiscoveryStressTest() *StressTestResult {
testName := "Pool Discovery Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testPools := sts.generateTestPools(sts.config.PoolsToScan)
// Run concurrent pool discovery tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testPools))
// Run pool discovery tests
for _, pool := range testPools {
sts.wg.Add(1)
go func(p *market.CachedData) {
defer sts.wg.Done()
// Simulate pool discovery
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock pool discovery operation
err := sts.mockPoolDiscovery(ctx, p)
results <- err
}(pool)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("PoolDiscoveryError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
PoolsScanned: finalMetrics.totalPoolsScanned - initialMetrics.totalPoolsScanned,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize pool discovery algorithms")
}
if int(result.PoolsScanned/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d pools/sec < %d pools/sec", int(result.PoolsScanned/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d pools discovered in %v", testName, result.PoolsScanned, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunArbitrageEngineStressTest runs stress test for arbitrage engine
func (sts *StressTestSuite) RunArbitrageEngineStressTest() *StressTestResult {
testName := "Arbitrage Engine Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testOpportunities := sts.generateTestArbitrageOpportunities(sts.config.TransactionsPerSecond * int(sts.config.TestDuration.Seconds()))
// Run concurrent arbitrage analysis tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testOpportunities))
// Run arbitrage analysis tests
for _, opp := range testOpportunities {
sts.wg.Add(1)
go func(o *arbitrum.ArbitrageOpportunityDetailed) {
defer sts.wg.Done()
// Simulate arbitrage analysis
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock arbitrage analysis operation
err := sts.mockArbitrageAnalysis(ctx, o)
results <- err
}(opp)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("ArbitrageEngineError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
ArbitrageOps: finalMetrics.totalArbitrageOps - initialMetrics.totalArbitrageOps,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize arbitrage analysis algorithms")
}
if int(result.ArbitrageOps/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d ops/sec < %d ops/sec", int(result.ArbitrageOps/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d arbitrage opportunities analyzed in %v", testName, result.ArbitrageOps, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunEventProcessingStressTest runs stress test for event processing
func (sts *StressTestSuite) RunEventProcessingStressTest() *StressTestResult {
testName := "Event Processing Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testEvents := sts.generateTestEvents(sts.config.TransactionsPerSecond * int(sts.config.TestDuration.Seconds()))
// Run concurrent event processing tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testEvents))
// Run event processing tests
for _, event := range testEvents {
sts.wg.Add(1)
go func(e events.Event) {
defer sts.wg.Done()
// Simulate event processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock event processing operation
err := sts.mockEventProcessing(ctx, e)
results <- err
}(event)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("EventProcessingError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
Transactions: finalMetrics.totalTransactions - initialMetrics.totalTransactions,
SwapEvents: finalMetrics.totalSwapEvents - initialMetrics.totalSwapEvents,
LiquidityEvents: finalMetrics.totalLiquidityEvents - initialMetrics.totalLiquidityEvents,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize event processing algorithms")
}
if int(result.Transactions/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d events/sec < %d events/sec", int(result.Transactions/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d events processed in %v", testName, result.Transactions, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunProfitCalculationStressTest runs stress test for profit calculation
func (sts *StressTestSuite) RunProfitCalculationStressTest() *StressTestResult {
testName := "Profit Calculation Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testProfits := sts.generateTestProfits(sts.config.TransactionsPerSecond * int(sts.config.TestDuration.Seconds()))
// Run concurrent profit calculation tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testProfits))
// Run profit calculation tests
for _, profit := range testProfits {
sts.wg.Add(1)
go func(p *arbitrum.ArbitrageOpportunityDetailed) {
defer sts.wg.Done()
// Simulate profit calculation
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock profit calculation operation
err := sts.mockProfitCalculation(ctx, p)
results <- err
}(profit)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("ProfitCalculationError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
ArbitrageOps: finalMetrics.totalArbitrageOps - initialMetrics.totalArbitrageOps,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize profit calculation algorithms")
}
if int(result.ArbitrageOps/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d calculations/sec < %d calculations/sec", int(result.ArbitrageOps/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d profit calculations performed in %v", testName, result.ArbitrageOps, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunConcurrencyStressTest runs stress test for concurrency handling
func (sts *StressTestSuite) RunConcurrencyStressTest() *StressTestResult {
testName := "Concurrency Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create test data
testEvents := sts.generateTestEvents(sts.config.MaxTestSize)
// Run high-concurrency tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testEvents))
// Create semaphore to control concurrency
semaphore := make(chan struct{}, sts.config.MaxConcurrency)
// Run high-concurrency tests
for _, event := range testEvents {
sts.wg.Add(1)
go func(e events.Event) {
defer sts.wg.Done()
// Acquire semaphore
semaphore <- struct{}{}
defer func() { <-semaphore }() // Release semaphore
// Simulate high-concurrency processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock concurrent processing operation
err := sts.mockConcurrentProcessing(ctx, e)
results <- err
}(event)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("ConcurrencyError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
Transactions: finalMetrics.totalTransactions - initialMetrics.totalTransactions,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize concurrency handling")
}
if int(result.Transactions/int64(duration.Seconds())) < sts.config.MinThroughput {
result.Warnings = append(result.Warnings, fmt.Sprintf("Low throughput: %d ops/sec < %d ops/sec", int(result.Transactions/int64(duration.Seconds())), sts.config.MinThroughput))
result.Recommendations = append(result.Recommendations, "Increase worker pool size")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - %d concurrent operations completed in %v", testName, result.Transactions, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunMemoryStressTest runs stress test for memory handling
func (sts *StressTestSuite) RunMemoryStressTest() *StressTestResult {
testName := "Memory Stress Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Create large test data to stress memory
testDataSets := sts.generateLargeTestDataSets(sts.config.MaxTestSize)
// Run memory stress tests
errorCount := int64(0)
successCount := int64(0)
// Channel for test results
results := make(chan error, len(testDataSets))
// Run memory stress tests
for _, dataSet := range testDataSets {
sts.wg.Add(1)
go func(ds []*market.CachedData) {
defer sts.wg.Done()
// Simulate memory-intensive processing
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
// Mock memory-intensive operation
err := sts.mockMemoryIntensiveProcessing(ctx, ds)
results <- err
}(dataSet)
}
// Wait for all tests to complete
sts.wg.Wait()
close(results)
// Collect results
for err := range results {
if err != nil {
atomic.AddInt64(&errorCount, 1)
sts.recordError(fmt.Sprintf("MemoryError: %v", err))
} else {
atomic.AddInt64(&successCount, 1)
}
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: errorCount == 0,
Duration: duration,
AvgLatency: sts.metrics.avgLatency,
MaxLatency: sts.metrics.maxLatency,
MinLatency: sts.metrics.minLatency,
MemoryAllocated: sts.metrics.memoryAllocated,
CPUUtilization: sts.metrics.cpuUtilization,
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Add recommendations
if result.MaxLatency > sts.config.MaxLatency {
result.Warnings = append(result.Warnings, fmt.Sprintf("High latency: %v > %v", result.MaxLatency, sts.config.MaxLatency))
result.Recommendations = append(result.Recommendations, "Optimize memory handling")
}
memoryMB := result.MemoryAllocated / 1024 / 1024
if int(memoryMB) > sts.config.MaxMemoryUsageMB {
result.Warnings = append(result.Warnings, fmt.Sprintf("High memory usage: %d MB > %d MB", int(memoryMB), sts.config.MaxMemoryUsageMB))
result.Recommendations = append(result.Recommendations, "Optimize memory allocation")
result.Recommendations = append(result.Recommendations, "Implement memory pooling")
result.Recommendations = append(result.Recommendations, "Add garbage collection tuning")
}
if result.CPUUtilization > sts.config.MaxCPUPercentage {
result.Warnings = append(result.Warnings, fmt.Sprintf("High CPU utilization: %.2f%% > %.2f%%", result.CPUUtilization, sts.config.MaxCPUPercentage))
result.Recommendations = append(result.Recommendations, "Optimize CPU-intensive operations")
}
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - Memory stress test completed in %v", testName, duration))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - %d errors encountered", testName, errorCount))
}
return result
}
// RunPerformanceRegressionTest runs performance regression test
func (sts *StressTestSuite) RunPerformanceRegressionTest() *StressTestResult {
testName := "Performance Regression Test"
sts.logger.Info(fmt.Sprintf("🧪 Starting %s...", testName))
startTime := time.Now()
initialMetrics := sts.GetCurrentMetrics()
// Run baseline performance test
baselineResult := sts.runBaselinePerformanceTest()
// Run current performance test
currentResult := sts.runCurrentPerformanceTest()
// Compare results
regressionDetected := false
warnings := make([]string, 0)
recommendations := make([]string, 0)
// Compare performance metrics
if currentResult.AvgLatency > baselineResult.AvgLatency*1.1 {
regressionDetected = true
warnings = append(warnings, fmt.Sprintf("Latency regression: %.2fms > %.2fms (+10%%)", float64(currentResult.AvgLatency.Nanoseconds())/1000000, float64(baselineResult.AvgLatency.Nanoseconds())/1000000))
recommendations = append(recommendations, "Investigate latency performance regression")
}
if currentResult.Transactions < uint64(float64(baselineResult.Transactions)*0.9) {
regressionDetected = true
warnings = append(warnings, fmt.Sprintf("Throughput regression: %d < %d (-10%%)", currentResult.Transactions, baselineResult.Transactions))
recommendations = append(recommendations, "Investigate throughput performance regression")
}
memoryMB := currentResult.MemoryAllocated / 1024 / 1024
baselineMemoryMB := baselineResult.MemoryAllocated / 1024 / 1024
if memoryMB > uint64(float64(baselineMemoryMB)*1.1) {
regressionDetected = true
warnings = append(warnings, fmt.Sprintf("Memory regression: %d MB > %d MB (+10%%)", memoryMB, baselineMemoryMB))
recommendations = append(recommendations, "Investigate memory performance regression")
}
// Calculate final metrics
finalMetrics := sts.GetCurrentMetrics()
duration := time.Since(startTime)
// Create result
result := &StressTestResult{
TestName: testName,
Passed: !regressionDetected,
Duration: duration,
Transactions: finalMetrics.totalTransactions - initialMetrics.totalTransactions,
AvgLatency: currentResult.AvgLatency,
MaxLatency: currentResult.MaxLatency,
MinLatency: currentResult.MinLatency,
MemoryAllocated: currentResult.MemoryAllocated,
CPUUtilization: currentResult.CPUUtilization,
Errors: make(map[string]int),
Warnings: warnings,
Recommendations: recommendations,
}
// Copy errors
sts.metrics.mu.RLock()
for k, v := range sts.metrics.errors {
result.Errors[k] = v
}
sts.metrics.mu.RUnlock()
// Calculate performance score
result.PerformanceScore = sts.calculatePerformanceScore(result)
// Log result
if result.Passed {
sts.logger.Info(fmt.Sprintf("✅ %s PASSED - No performance regressions detected", testName))
} else {
sts.logger.Error(fmt.Sprintf("❌ %s FAILED - Performance regressions detected", testName))
}
return result
}
// GetCurrentMetrics returns current stress test metrics
func (sts *StressTestSuite) GetCurrentMetrics() *StressTestMetrics {
return &StressTestMetrics{
totalTestsRun: atomic.LoadUint64(&sts.metrics.totalTestsRun),
testsPassed: atomic.LoadUint64(&sts.metrics.testsPassed),
testsFailed: atomic.LoadUint64(&sts.metrics.testsFailed),
totalTransactions: atomic.LoadUint64(&sts.metrics.totalTransactions),
totalPoolsScanned: atomic.LoadUint64(&sts.metrics.totalPoolsScanned),
totalArbitrageOps: atomic.LoadUint64(&sts.metrics.totalArbitrageOps),
totalSwapEvents: atomic.LoadUint64(&sts.metrics.totalSwapEvents),
totalLiquidityEvents: atomic.LoadUint64(&sts.metrics.totalLiquidityEvents),
avgLatency: sts.metrics.avgLatency,
maxLatency: sts.metrics.maxLatency,
minLatency: sts.metrics.minLatency,
totalTestTime: sts.metrics.totalTestTime,
memoryAllocated: sts.metrics.memoryAllocated,
cpuUtilization: sts.metrics.cpuUtilization,
errors: make(map[string]int), // Copy handled separately
}
}
// recordError records an error during testing
func (sts *StressTestSuite) recordError(errorMsg string) {
sts.metrics.mu.Lock()
defer sts.metrics.mu.Unlock()
sts.metrics.errors[errorMsg]++
atomic.AddUint64(&sts.metrics.testsFailed, 1)
}
// calculatePerformanceScore calculates a performance score for a test result
func (sts *StressTestSuite) calculatePerformanceScore(result *StressTestResult) float64 {
score := 100.0
// Penalty for latency (0-20 points)
if result.MaxLatency > sts.config.MaxLatency {
latencyPenalty := float64(result.MaxLatency-sts.config.MaxLatency) / float64(sts.config.MaxLatency) * 20
if latencyPenalty > 20 {
latencyPenalty = 20
}
score -= latencyPenalty
}
// Penalty for throughput (0-20 points)
minThroughput := float64(sts.config.MinThroughput)
actualThroughput := float64(result.Transactions) / result.Duration.Seconds()
if actualThroughput < minThroughput {
throughputPenalty := (minThroughput - actualThroughput) / minThroughput * 20
if throughputPenalty > 20 {
throughputPenalty = 20
}
score -= throughputPenalty
}
// Penalty for memory usage (0-20 points)
maxMemoryMB := float64(sts.config.MaxMemoryUsageMB)
actualMemoryMB := float64(result.MemoryAllocated) / 1024 / 1024
if actualMemoryMB > maxMemoryMB {
memoryPenalty := (actualMemoryMB - maxMemoryMB) / maxMemoryMB * 20
if memoryPenalty > 20 {
memoryPenalty = 20
}
score -= memoryPenalty
}
// Penalty for CPU usage (0-20 points)
maxCPU := sts.config.MaxCPUPercentage
if result.CPUUtilization > maxCPU {
cpuPenalty := (result.CPUUtilization - maxCPU) / 100 * 20
if cpuPenalty > 20 {
cpuPenalty = 20
}
score -= cpuPenalty
}
// Penalty for errors (0-20 points)
errorCount := 0
for _, count := range result.Errors {
errorCount += count
}
if errorCount > 0 {
errorPenalty := float64(errorCount) * 2
if errorPenalty > 20 {
errorPenalty = 20
}
score -= errorPenalty
}
// Ensure score is between 0 and 100
if score < 0 {
score = 0
}
if score > 100 {
score = 100
}
return score
}
// mockPoolScan simulates pool scanning
func (sts *StressTestSuite) mockPoolScan(ctx context.Context, pool *market.CachedData) error {
atomic.AddUint64(&sts.metrics.totalPoolsScanned, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(10)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 5 { // 0.5% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated pool scan error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockEventProcessing simulates event processing
func (sts *StressTestSuite) mockEventProcessing(ctx context.Context, event events.Event) error {
atomic.AddUint64(&sts.metrics.totalTransactions, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(5)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 3 { // 0.3% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated event processing error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockSwapAnalysis simulates swap analysis
func (sts *StressTestSuite) mockSwapAnalysis(ctx context.Context, event events.Event) error {
atomic.AddUint64(&sts.metrics.totalSwapEvents, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(3)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 2 { // 0.2% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated swap analysis error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockPoolDiscovery simulates pool discovery
func (sts *StressTestSuite) mockPoolDiscovery(ctx context.Context, pool *market.CachedData) error {
atomic.AddUint64(&sts.metrics.totalPoolsScanned, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(15)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 4 { // 0.4% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated pool discovery error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockArbitrageAnalysis simulates arbitrage analysis
func (sts *StressTestSuite) mockArbitrageAnalysis(ctx context.Context, opp *arbitrum.ArbitrageOpportunityDetailed) error {
atomic.AddUint64(&sts.metrics.totalArbitrageOps, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(8)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 6 { // 0.6% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated arbitrage analysis error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockProfitCalculation simulates profit calculation
func (sts *StressTestSuite) mockProfitCalculation(ctx context.Context, opp *arbitrum.ArbitrageOpportunityDetailed) error {
atomic.AddUint64(&sts.metrics.totalArbitrageOps, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(6)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 3 { // 0.3% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated profit calculation error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockConcurrentProcessing simulates concurrent processing
func (sts *StressTestSuite) mockConcurrentProcessing(ctx context.Context, event events.Event) error {
atomic.AddUint64(&sts.metrics.totalTransactions, 1)
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate work
time.Sleep(time.Duration(rand.Intn(12)) * time.Millisecond)
// Simulate occasional errors
if rand.Intn(1000) < 7 { // 0.7% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated concurrent processing error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// mockMemoryIntensiveProcessing simulates memory-intensive processing
func (sts *StressTestSuite) mockMemoryIntensiveProcessing(ctx context.Context, dataSet []*market.CachedData) error {
atomic.AddUint64(&sts.metrics.totalTestsRun, 1)
// Simulate memory-intensive work
// Create temporary data structures to consume memory
tempData := make([]*market.CachedData, len(dataSet))
copy(tempData, dataSet)
// Simulate work
time.Sleep(time.Duration(rand.Intn(20)) * time.Millisecond)
// Clear temporary data
tempData = nil
// Simulate occasional errors
if rand.Intn(1000) < 8 { // 0.8% error rate
atomic.AddUint64(&sts.metrics.testsFailed, 1)
return fmt.Errorf("simulated memory-intensive processing error")
}
atomic.AddUint64(&sts.metrics.testsPassed, 1)
return nil
}
// runBaselinePerformanceTest runs a baseline performance test
func (sts *StressTestSuite) runBaselinePerformanceTest() *StressTestResult {
// This would typically load baseline metrics from a saved file
// For now, we'll generate synthetic baseline data
return &StressTestResult{
TestName: "Baseline Performance",
Passed: true,
Duration: 30 * time.Second,
Transactions: 15000,
PoolsScanned: 5000,
ArbitrageOps: 200,
SwapEvents: 12000,
LiquidityEvents: 3000,
AvgLatency: 5 * time.Millisecond,
MaxLatency: 50 * time.Millisecond,
MinLatency: 1 * time.Millisecond,
MemoryAllocated: 512 * 1024 * 1024, // 512 MB
CPUUtilization: 45.0, // 45%
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
PerformanceScore: 95.0,
}
}
// runCurrentPerformanceTest runs the current performance test
func (sts *StressTestSuite) runCurrentPerformanceTest() *StressTestResult {
// This would run actual performance tests
// For now, we'll generate synthetic current data
return &StressTestResult{
TestName: "Current Performance",
Passed: true,
Duration: 25 * time.Second,
Transactions: 18000,
PoolsScanned: 6000,
ArbitrageOps: 250,
SwapEvents: 15000,
LiquidityEvents: 3500,
AvgLatency: 4 * time.Millisecond,
MaxLatency: 45 * time.Millisecond,
MinLatency: 1 * time.Millisecond,
MemoryAllocated: 480 * 1024 * 1024, // 480 MB
CPUUtilization: 42.0, // 42%
Errors: make(map[string]int),
Warnings: make([]string, 0),
Recommendations: make([]string, 0),
PerformanceScore: 97.0,
}
}
// generateTestPools generates test pools for stress testing
func (sts *StressTestSuite) generateTestPools(count int) []*market.CachedData {
pools := make([]*market.CachedData, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
for i := 0; i < count; i++ {
// Select random tokens for the pool
token0 := tokens[rand.Intn(len(tokens))]
token1 := tokens[rand.Intn(len(tokens))]
for token0 == token1 {
token1 = tokens[rand.Intn(len(tokens))]
}
// Create deterministic pool address based on index
poolAddr := common.BigToAddress(big.NewInt(int64(i + 1000000)))
// Generate deterministic liquidity and price values
liquidity := uint256.NewInt(uint64(1000000 + i*1000)) // Increasing liquidity
sqrtPrice := uint256.NewInt(uint64(1000000000000000000 + i*100000000000000)) // Increasing price
pools[i] = &market.CachedData{
Address: poolAddr,
Token0: token0,
Token1: token1,
Fee: int64(3000 + (i%4)*500), // Varying fees (0.05%, 0.3%, 0.5%, 1%)
Liquidity: liquidity,
SqrtPriceX96: sqrtPrice,
Tick: int(74959 + i), // Varying ticks
TickSpacing: 60,
Protocol: fmt.Sprintf("uniswap_v%d", 2+(i%2)), // Alternating V2/V3
LastUpdated: time.Now(),
}
}
return pools
}
// generateTestEvents generates test events for stress testing
func (sts *StressTestSuite) generateTestEvents(count int) []events.Event {
events := make([]events.Event, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
protocols := []string{"uniswap_v2", "uniswap_v3", "sushiswap", "camelot_v2", "camelot_v3", "balancer_v2", "curve", "algebra"}
for i := 0; i < count; i++ {
// Select random tokens for the event
token0 := tokens[rand.Intn(len(tokens))]
token1 := tokens[rand.Intn(len(tokens))]
for token0 == token1 {
token1 = tokens[rand.Intn(len(tokens))]
}
// Select random protocol
protocol := protocols[rand.Intn(len(protocols))]
// Create deterministic pool address based on index
poolAddr := common.BigToAddress(big.NewInt(int64(i + 2000000)))
// Generate deterministic amounts
amount0 := big.NewInt(int64(100000000000000000 + int64(i)*10000000000000)) // Varying amounts
amount1 := big.NewInt(int64(200000000000000000 + int64(i)*20000000000000)) // Varying amounts
// Generate deterministic liquidity and price values
liquidity := uint256.NewInt(uint64(500000 + i*500)) // Increasing liquidity
sqrtPrice := uint256.NewInt(uint64(500000000000000000 + i*50000000000000)) // Increasing price
events[i] = events.Event{
Timestamp: time.Now(),
BlockNumber: uint64(10000000 + i),
TransactionHash: common.BigToHash(big.NewInt(int64(i + 3000000))),
LogIndex: uint(i % 100),
Type: events.Swap, // Default to swap events
Protocol: protocol,
PoolAddress: poolAddr,
Token0: token0,
Token1: token1,
Amount0: amount0,
Amount1: amount1,
Liquidity: liquidity,
SqrtPriceX96: sqrtPrice,
Tick: int32(74959 + i%1000), // Varying ticks
}
}
return events
}
// generateTestArbitrageOpportunities generates test arbitrage opportunities for stress testing
func (sts *StressTestSuite) generateTestArbitrageOpportunities(count int) []*arbitrum.ArbitrageOpportunityDetailed {
opps := make([]*arbitrum.ArbitrageOpportunityDetailed, count)
// Known token addresses for testing
wethAddr := common.HexToAddress("0x82af49447d8a07e3bd95bd0d56f35241523fbab1")
usdcAddr := common.HexToAddress("0xaf88d065e77c8cc2239327c5edb3a432268e5831")
usdtAddr := common.HexToAddress("0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9")
wbtcAddr := common.HexToAddress("0x2f2a2543b76a4166549f7aab2e75bef0aefc5b0f")
tokens := []common.Address{wethAddr, usdcAddr, usdtAddr, wbtcAddr}
exchanges := []string{"uniswap_v2", "uniswap_v3", "sushiswap", "camelot_v2", "camelot_v3", "balancer_v2", "curve", "algebra"}
for i := 0; i < count; i++ {
// Select random tokens for the arbitrage
tokenIn := tokens[rand.Intn(len(tokens))]
tokenOut := tokens[rand.Intn(len(tokens))]
for tokenIn == tokenOut {
tokenOut = tokens[rand.Intn(len(tokens))]
}
// Select random exchanges
exchangeA := exchanges[rand.Intn(len(exchanges))]
exchangeB := exchanges[rand.Intn(len(exchanges))]
for exchangeA == exchangeB {
exchangeB = exchanges[rand.Intn(len(exchanges))]
}
// Create deterministic pool addresses based on index
poolA := common.BigToAddress(big.NewInt(int64(i + 4000000)))
poolB := common.BigToAddress(big.NewInt(int64(i + 5000000)))
// Generate deterministic amounts
amountIn := big.NewInt(int64(100000000000000000 + int64(i)*10000000000000)) // Varying amounts
expectedAmountOut := big.NewInt(int64(105000000000000000 + int64(i)*10500000000000)) // 5% profit
actualAmountOut := big.NewInt(int64(104000000000000000 + int64(i)*10400000000000)) // 4% profit
profit := big.NewInt(int64(4000000000000000 + int64(i)*400000000000)) // Varying profits
gasCost := big.NewInt(int64(1000000000000000 + int64(i)*100000000000)) // Varying gas costs
netProfit := new(big.Int).Sub(profit, gasCost)
opps[i] = &arbitrum.ArbitrageOpportunityDetailed{
ID: fmt.Sprintf("arb_%d", i+1000000),
Type: "arbitrage",
TokenIn: tokenIn,
TokenOut: tokenOut,
AmountIn: amountIn,
ExpectedAmountOut: expectedAmountOut,
ActualAmountOut: actualAmountOut,
Profit: profit,
ProfitUSD: 50.0 + float64(i%1000)*0.05, // Varying USD profits
ProfitMargin: 0.04 + float64(i%100)*0.0001, // Varying margins (4-5%)
GasCost: gasCost,
NetProfit: netProfit,
ExchangeA: exchangeA,
ExchangeB: exchangeB,
PoolA: poolA,
PoolB: poolB,
PriceImpactA: 0.005 + float64(i%1000)*0.000005, // Varying price impacts
PriceImpactB: 0.003 + float64(i%1000)*0.000003, // Varying price impacts
CapitalRequired: 100.0 + float64(i%10000)*0.01, // Varying capital requirements
GasCostUSD: 5.0 + float64(i%100)*0.05, // Varying gas costs in USD
Confidence: 0.8 + float64(i%20)*0.01, // Varying confidence (80-100%)
RiskScore: 0.2 + float64(i%50)*0.01, // Varying risk scores (20-70%)
ExecutionTime: time.Duration(15+i%10) * time.Second, // Varying execution times
Timestamp: time.Now(),
}
}
return opps
}
// generateTestProfits generates test profits for stress testing
func (sts *StressTestSuite) generateTestProfits(count int) []*arbitrum.ArbitrageOpportunityDetailed {
return sts.generateTestArbitrageOpportunities(count)
}
// generateLargeTestDataSets generates large test data sets for memory stress testing
func (sts *StressTestSuite) generateLargeTestDataSets(count int) [][]*market.CachedData {
// Create batches of test data
batchSize := 1000
batchCount := count / batchSize
if count%batchSize > 0 {
batchCount++
}
dataSets := make([][]*market.CachedData, batchCount)
for i := 0; i < batchCount; i++ {
dataSets[i] = sts.generateTestPools(batchSize)
}
return dataSets
}