Files
mev-beta/pkg/arbitrum/l2_parser.go
2025-09-16 11:05:47 -05:00

821 lines
28 KiB
Go

package arbitrum
import (
"context"
"encoding/hex"
"fmt"
"math/big"
"strings"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rpc"
"github.com/fraktal/mev-beta/internal/logger"
"github.com/fraktal/mev-beta/pkg/oracle"
"github.com/fraktal/mev-beta/pkg/pools"
)
// RawL2Transaction represents a raw Arbitrum L2 transaction
type RawL2Transaction struct {
Hash string `json:"hash"`
From string `json:"from"`
To string `json:"to"`
Value string `json:"value"`
Gas string `json:"gas"`
GasPrice string `json:"gasPrice"`
Input string `json:"input"`
Nonce string `json:"nonce"`
TransactionIndex string `json:"transactionIndex"`
Type string `json:"type"`
ChainID string `json:"chainId,omitempty"`
V string `json:"v,omitempty"`
R string `json:"r,omitempty"`
S string `json:"s,omitempty"`
}
// RawL2Block represents a raw Arbitrum L2 block
type RawL2Block struct {
Hash string `json:"hash"`
Number string `json:"number"`
Timestamp string `json:"timestamp"`
Transactions []RawL2Transaction `json:"transactions"`
}
// RawL2BlockWithLogs represents a raw Arbitrum L2 block with logs
type RawL2BlockWithLogs struct {
Hash string `json:"hash"`
Number string `json:"number"`
Timestamp string `json:"timestamp"`
Transactions []RawL2TransactionWithLogs `json:"transactions"`
}
// RawL2TransactionWithLogs includes transaction logs for pool discovery
type RawL2TransactionWithLogs struct {
Hash string `json:"hash"`
From string `json:"from"`
To string `json:"to"`
Value string `json:"value"`
Gas string `json:"gas"`
GasPrice string `json:"gasPrice"`
Input string `json:"input"`
Logs []interface{} `json:"logs"`
TransactionIndex string `json:"transactionIndex"`
Type string `json:"type"`
}
// DEXFunctionSignature represents a DEX function signature
type DEXFunctionSignature struct {
Signature string
Name string
Protocol string
Description string
}
// ArbitrumL2Parser handles parsing of Arbitrum L2 transactions
type ArbitrumL2Parser struct {
client *rpc.Client
logger *logger.Logger
oracle *oracle.PriceOracle
// DEX contract addresses on Arbitrum
dexContracts map[common.Address]string
// DEX function signatures
dexFunctions map[string]DEXFunctionSignature
// Pool discovery system
poolDiscovery *pools.PoolDiscovery
}
// NewArbitrumL2Parser creates a new Arbitrum L2 transaction parser
func NewArbitrumL2Parser(rpcEndpoint string, logger *logger.Logger, priceOracle *oracle.PriceOracle) (*ArbitrumL2Parser, error) {
client, err := rpc.Dial(rpcEndpoint)
if err != nil {
return nil, fmt.Errorf("failed to connect to Arbitrum RPC: %v", err)
}
parser := &ArbitrumL2Parser{
client: client,
logger: logger,
oracle: priceOracle,
dexContracts: make(map[common.Address]string),
dexFunctions: make(map[string]DEXFunctionSignature),
}
// Initialize DEX contracts and functions
parser.initializeDEXData()
// Initialize pool discovery system
parser.poolDiscovery = pools.NewPoolDiscovery(client, logger)
logger.Info(fmt.Sprintf("Pool discovery system initialized - %d pools, %d exchanges loaded",
parser.poolDiscovery.GetPoolCount(), parser.poolDiscovery.GetExchangeCount()))
return parser, nil
}
// initializeDEXData initializes known DEX contracts and function signatures
func (p *ArbitrumL2Parser) initializeDEXData() {
// Official Arbitrum DEX contracts
p.dexContracts[common.HexToAddress("0xf1D7CC64Fb4452F05c498126312eBE29f30Fbcf9")] = "UniswapV2Factory"
p.dexContracts[common.HexToAddress("0x1F98431c8aD98523631AE4a59f267346ea31F984")] = "UniswapV3Factory"
p.dexContracts[common.HexToAddress("0xc35DADB65012eC5796536bD9864eD8773aBc74C4")] = "SushiSwapFactory"
p.dexContracts[common.HexToAddress("0x4752ba5dbc23f44d87826276bf6fd6b1c372ad24")] = "UniswapV2Router02"
p.dexContracts[common.HexToAddress("0xE592427A0AEce92De3Edee1F18E0157C05861564")] = "UniswapV3Router"
p.dexContracts[common.HexToAddress("0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45")] = "UniswapV3Router02"
p.dexContracts[common.HexToAddress("0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506")] = "SushiSwapRouter"
p.dexContracts[common.HexToAddress("0xC36442b4a4522E871399CD717aBDD847Ab11FE88")] = "UniswapV3PositionManager"
// CORRECT DEX function signatures verified for Arbitrum (first 4 bytes of keccak256(function_signature))
// Uniswap V2 swap functions
p.dexFunctions["0x38ed1739"] = DEXFunctionSignature{
Signature: "0x38ed1739",
Name: "swapExactTokensForTokens",
Protocol: "UniswapV2",
Description: "Swap exact tokens for tokens",
}
p.dexFunctions["0x8803dbee"] = DEXFunctionSignature{
Signature: "0x8803dbee",
Name: "swapTokensForExactTokens",
Protocol: "UniswapV2",
Description: "Swap tokens for exact tokens",
}
p.dexFunctions["0x7ff36ab5"] = DEXFunctionSignature{
Signature: "0x7ff36ab5",
Name: "swapExactETHForTokens",
Protocol: "UniswapV2",
Description: "Swap exact ETH for tokens",
}
p.dexFunctions["0x4a25d94a"] = DEXFunctionSignature{
Signature: "0x4a25d94a",
Name: "swapTokensForExactETH",
Protocol: "UniswapV2",
Description: "Swap tokens for exact ETH",
}
p.dexFunctions["0x18cbafe5"] = DEXFunctionSignature{
Signature: "0x18cbafe5",
Name: "swapExactTokensForETH",
Protocol: "UniswapV2",
Description: "Swap exact tokens for ETH",
}
p.dexFunctions["0x791ac947"] = DEXFunctionSignature{
Signature: "0x791ac947",
Name: "swapExactTokensForETHSupportingFeeOnTransferTokens",
Protocol: "UniswapV2",
Description: "Swap exact tokens for ETH supporting fee-on-transfer tokens",
}
p.dexFunctions["0xb6f9de95"] = DEXFunctionSignature{
Signature: "0xb6f9de95",
Name: "swapExactETHForTokensSupportingFeeOnTransferTokens",
Protocol: "UniswapV2",
Description: "Swap exact ETH for tokens supporting fee-on-transfer tokens",
}
p.dexFunctions["0x5c11d795"] = DEXFunctionSignature{
Signature: "0x5c11d795",
Name: "swapExactTokensForTokensSupportingFeeOnTransferTokens",
Protocol: "UniswapV2",
Description: "Swap exact tokens for tokens supporting fee-on-transfer tokens",
}
// Uniswap V2 liquidity functions
p.dexFunctions["0xe8e33700"] = DEXFunctionSignature{
Signature: "0xe8e33700",
Name: "addLiquidity",
Protocol: "UniswapV2",
Description: "Add liquidity to pool",
}
p.dexFunctions["0xf305d719"] = DEXFunctionSignature{
Signature: "0xf305d719",
Name: "addLiquidityETH",
Protocol: "UniswapV2",
Description: "Add liquidity with ETH",
}
p.dexFunctions["0xbaa2abde"] = DEXFunctionSignature{
Signature: "0xbaa2abde",
Name: "removeLiquidity",
Protocol: "UniswapV2",
Description: "Remove liquidity from pool",
}
p.dexFunctions["0x02751cec"] = DEXFunctionSignature{
Signature: "0x02751cec",
Name: "removeLiquidityETH",
Protocol: "UniswapV2",
Description: "Remove liquidity with ETH",
}
// Uniswap V3 swap functions
p.dexFunctions["0x414bf389"] = DEXFunctionSignature{
Signature: "0x414bf389",
Name: "exactInputSingle",
Protocol: "UniswapV3",
Description: "Exact input single swap",
}
p.dexFunctions["0xc04b8d59"] = DEXFunctionSignature{
Signature: "0xc04b8d59",
Name: "exactInput",
Protocol: "UniswapV3",
Description: "Exact input multi-hop swap",
}
p.dexFunctions["0xdb3e2198"] = DEXFunctionSignature{
Signature: "0xdb3e2198",
Name: "exactOutputSingle",
Protocol: "UniswapV3",
Description: "Exact output single swap",
}
p.dexFunctions["0xf28c0498"] = DEXFunctionSignature{
Signature: "0xf28c0498",
Name: "exactOutput",
Protocol: "UniswapV3",
Description: "Exact output multi-hop swap",
}
p.dexFunctions["0xac9650d8"] = DEXFunctionSignature{
Signature: "0xac9650d8",
Name: "multicall",
Protocol: "UniswapV3",
Description: "Batch multiple function calls",
}
// Uniswap V3 position management functions
p.dexFunctions["0x88316456"] = DEXFunctionSignature{
Signature: "0x88316456",
Name: "mint",
Protocol: "UniswapV3",
Description: "Mint new liquidity position",
}
p.dexFunctions["0xfc6f7865"] = DEXFunctionSignature{
Signature: "0xfc6f7865",
Name: "collect",
Protocol: "UniswapV3",
Description: "Collect fees from position",
}
p.dexFunctions["0x219f5d17"] = DEXFunctionSignature{
Signature: "0x219f5d17",
Name: "increaseLiquidity",
Protocol: "UniswapV3",
Description: "Increase liquidity in position",
}
p.dexFunctions["0x0c49ccbe"] = DEXFunctionSignature{
Signature: "0x0c49ccbe",
Name: "decreaseLiquidity",
Protocol: "UniswapV3",
Description: "Decrease liquidity in position",
}
}
// GetBlockByNumber fetches a block with full transaction details using raw RPC
func (p *ArbitrumL2Parser) GetBlockByNumber(ctx context.Context, blockNumber uint64) (*RawL2Block, error) {
var block RawL2Block
blockNumHex := fmt.Sprintf("0x%x", blockNumber)
err := p.client.CallContext(ctx, &block, "eth_getBlockByNumber", blockNumHex, true)
if err != nil {
return nil, fmt.Errorf("failed to get block %d: %v", blockNumber, err)
}
p.logger.Debug(fmt.Sprintf("Retrieved L2 block %d with %d transactions", blockNumber, len(block.Transactions)))
return &block, nil
}
// ParseDEXTransactions analyzes transactions in a block for DEX interactions
func (p *ArbitrumL2Parser) ParseDEXTransactions(ctx context.Context, block *RawL2Block) []DEXTransaction {
var dexTransactions []DEXTransaction
for _, tx := range block.Transactions {
if dexTx := p.parseDEXTransaction(tx); dexTx != nil {
dexTransactions = append(dexTransactions, *dexTx)
}
}
if len(dexTransactions) > 0 {
p.logger.Info(fmt.Sprintf("Block %s: Found %d DEX transactions", block.Number, len(dexTransactions)))
}
return dexTransactions
}
// SwapDetails contains detailed information about a DEX swap
type SwapDetails struct {
AmountIn *big.Int
AmountOut *big.Int
AmountMin *big.Int
TokenIn string
TokenOut string
Fee uint32
Deadline uint64
Recipient string
IsValid bool
}
// DEXTransaction represents a parsed DEX transaction
type DEXTransaction struct {
Hash string
From string
To string
Value *big.Int
FunctionSig string
FunctionName string
Protocol string
InputData []byte
ContractName string
BlockNumber string
SwapDetails *SwapDetails // Detailed swap information
}
// parseDEXTransaction checks if a transaction is a DEX interaction
func (p *ArbitrumL2Parser) parseDEXTransaction(tx RawL2Transaction) *DEXTransaction {
// Skip transactions without recipient (contract creation)
if tx.To == "" || tx.To == "0x" {
return nil
}
// Skip transactions without input data
if tx.Input == "" || tx.Input == "0x" || len(tx.Input) < 10 {
return nil
}
toAddr := common.HexToAddress(tx.To)
// Check if transaction is to a known DEX contract
contractName, isDEXContract := p.dexContracts[toAddr]
// Extract function signature (first 4 bytes of input data)
functionSig := tx.Input[:10] // "0x" + 8 hex chars = 10 chars
// Check if function signature matches known DEX functions
if funcInfo, isDEXFunction := p.dexFunctions[functionSig]; isDEXFunction {
// Parse value
value := big.NewInt(0)
if tx.Value != "" && tx.Value != "0x" && tx.Value != "0x0" {
value.SetString(strings.TrimPrefix(tx.Value, "0x"), 16)
}
// Parse input data
inputData, err := hex.DecodeString(strings.TrimPrefix(tx.Input, "0x"))
if err != nil {
p.logger.Debug(fmt.Sprintf("Failed to decode input data for transaction %s: %v", tx.Hash, err))
inputData = []byte{}
}
// Decode function parameters based on function type
swapDetails := p.decodeFunctionDataStructured(funcInfo, inputData)
// Use detailed opportunity logging if swap details are available
if swapDetails != nil && swapDetails.IsValid && swapDetails.AmountIn != nil {
amountInFloat := new(big.Float).Quo(new(big.Float).SetInt(swapDetails.AmountIn), big.NewFloat(1e18))
amountOutFloat := float64(0)
if swapDetails.AmountOut != nil {
amountOutFloat, _ = new(big.Float).Quo(new(big.Float).SetInt(swapDetails.AmountOut), big.NewFloat(1e18)).Float64()
}
amountMinFloat := float64(0)
if swapDetails.AmountMin != nil {
amountMinFloat, _ = new(big.Float).Quo(new(big.Float).SetInt(swapDetails.AmountMin), big.NewFloat(1e18)).Float64()
}
amountInFloatVal, _ := amountInFloat.Float64()
// Calculate estimated profit using price oracle
estimatedProfitUSD, err := p.calculateProfitWithOracle(swapDetails)
if err != nil {
p.logger.Debug(fmt.Sprintf("Failed to calculate profit with oracle: %v", err))
estimatedProfitUSD = 0.0
}
additionalData := map[string]interface{}{
"tokenIn": swapDetails.TokenIn,
"tokenOut": swapDetails.TokenOut,
"fee": swapDetails.Fee,
"deadline": swapDetails.Deadline,
"recipient": swapDetails.Recipient,
"contractName": contractName,
"functionSig": functionSig,
}
p.logger.Opportunity(tx.Hash, tx.From, tx.To, funcInfo.Name, funcInfo.Protocol,
amountInFloatVal, amountOutFloat, amountMinFloat, estimatedProfitUSD, additionalData)
} else {
// Fallback to simple logging
swapDetailsStr := p.decodeFunctionData(funcInfo, inputData)
p.logger.Info(fmt.Sprintf("DEX Transaction detected: %s -> %s (%s) calling %s (%s), Value: %s ETH%s",
tx.From, tx.To, contractName, funcInfo.Name, funcInfo.Protocol,
new(big.Float).Quo(new(big.Float).SetInt(value), big.NewFloat(1e18)).String(), swapDetailsStr))
}
return &DEXTransaction{
Hash: tx.Hash,
From: tx.From,
To: tx.To,
Value: value,
FunctionSig: functionSig,
FunctionName: funcInfo.Name,
Protocol: funcInfo.Protocol,
InputData: inputData,
ContractName: contractName,
BlockNumber: "", // Will be set by caller
SwapDetails: swapDetails,
}
}
// Check if it's to a known DEX contract but unknown function
if isDEXContract {
p.logger.Debug(fmt.Sprintf("Unknown DEX function call: %s -> %s (%s), Function: %s",
tx.From, tx.To, contractName, functionSig))
}
return nil
}
// decodeFunctionData extracts parameters from transaction input data
func (p *ArbitrumL2Parser) decodeFunctionData(funcInfo DEXFunctionSignature, inputData []byte) string {
if len(inputData) < 4 {
return ""
}
// Skip the 4-byte function selector
params := inputData[4:]
switch funcInfo.Name {
case "swapExactTokensForTokens":
return p.decodeSwapExactTokensForTokens(params)
case "swapTokensForExactTokens":
return p.decodeSwapTokensForExactTokens(params)
case "swapExactETHForTokens":
return p.decodeSwapExactETHForTokens(params)
case "swapExactTokensForETH":
return p.decodeSwapExactTokensForETH(params)
case "exactInputSingle":
return p.decodeExactInputSingle(params)
case "exactInput":
return p.decodeExactInput(params)
case "exactOutputSingle":
return p.decodeExactOutputSingle(params)
case "multicall":
return p.decodeMulticall(params)
default:
return fmt.Sprintf(", Raw input: %d bytes", len(inputData))
}
}
// decodeSwapExactTokensForTokens decodes UniswapV2 swapExactTokensForTokens parameters
// function swapExactTokensForTokens(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
func (p *ArbitrumL2Parser) decodeSwapExactTokensForTokens(params []byte) string {
if len(params) < 160 { // 5 parameters * 32 bytes each
return ", Invalid parameters"
}
// Decode parameters (simplified - real ABI decoding would be more robust)
amountIn := new(big.Int).SetBytes(params[0:32])
amountOutMin := new(big.Int).SetBytes(params[32:64])
// Convert to readable format
amountInEth := new(big.Float).Quo(new(big.Float).SetInt(amountIn), big.NewFloat(1e18))
amountOutMinEth := new(big.Float).Quo(new(big.Float).SetInt(amountOutMin), big.NewFloat(1e18))
return fmt.Sprintf(", AmountIn: %s tokens, MinOut: %s tokens",
amountInEth.Text('f', 6), amountOutMinEth.Text('f', 6))
}
// decodeSwapTokensForExactTokens decodes UniswapV2 swapTokensForExactTokens parameters
func (p *ArbitrumL2Parser) decodeSwapTokensForExactTokens(params []byte) string {
if len(params) < 160 {
return ", Invalid parameters"
}
amountOut := new(big.Int).SetBytes(params[0:32])
amountInMax := new(big.Int).SetBytes(params[32:64])
amountOutEth := new(big.Float).Quo(new(big.Float).SetInt(amountOut), big.NewFloat(1e18))
amountInMaxEth := new(big.Float).Quo(new(big.Float).SetInt(amountInMax), big.NewFloat(1e18))
return fmt.Sprintf(", AmountOut: %s tokens, MaxIn: %s tokens",
amountOutEth.Text('f', 6), amountInMaxEth.Text('f', 6))
}
// decodeSwapExactETHForTokens decodes UniswapV2 swapExactETHForTokens parameters
func (p *ArbitrumL2Parser) decodeSwapExactETHForTokens(params []byte) string {
if len(params) < 32 {
return ", Invalid parameters"
}
amountOutMin := new(big.Int).SetBytes(params[0:32])
amountOutMinEth := new(big.Float).Quo(new(big.Float).SetInt(amountOutMin), big.NewFloat(1e18))
return fmt.Sprintf(", MinOut: %s tokens", amountOutMinEth.Text('f', 6))
}
// decodeSwapExactTokensForETH decodes UniswapV2 swapExactTokensForETH parameters
func (p *ArbitrumL2Parser) decodeSwapExactTokensForETH(params []byte) string {
if len(params) < 64 {
return ", Invalid parameters"
}
amountIn := new(big.Int).SetBytes(params[0:32])
amountOutMin := new(big.Int).SetBytes(params[32:64])
amountInEth := new(big.Float).Quo(new(big.Float).SetInt(amountIn), big.NewFloat(1e18))
amountOutMinEth := new(big.Float).Quo(new(big.Float).SetInt(amountOutMin), big.NewFloat(1e18))
return fmt.Sprintf(", AmountIn: %s tokens, MinETH: %s",
amountInEth.Text('f', 6), amountOutMinEth.Text('f', 6))
}
// decodeExactInputSingle decodes UniswapV3 exactInputSingle parameters
func (p *ArbitrumL2Parser) decodeExactInputSingle(params []byte) string {
if len(params) < 160 { // ExactInputSingleParams struct
return ", Invalid parameters"
}
// Simplified decoding - real implementation would parse the struct properly
amountIn := new(big.Int).SetBytes(params[128:160]) // approximation
amountInEth := new(big.Float).Quo(new(big.Float).SetInt(amountIn), big.NewFloat(1e18))
return fmt.Sprintf(", AmountIn: %s tokens", amountInEth.Text('f', 6))
}
// decodeExactInput decodes UniswapV3 exactInput parameters
func (p *ArbitrumL2Parser) decodeExactInput(params []byte) string {
if len(params) < 128 {
return ", Invalid parameters"
}
amountIn := new(big.Int).SetBytes(params[64:96]) // approximation
amountInEth := new(big.Float).Quo(new(big.Float).SetInt(amountIn), big.NewFloat(1e18))
return fmt.Sprintf(", AmountIn: %s tokens (multi-hop)", amountInEth.Text('f', 6))
}
// decodeExactOutputSingle decodes UniswapV3 exactOutputSingle parameters
func (p *ArbitrumL2Parser) decodeExactOutputSingle(params []byte) string {
if len(params) < 160 {
return ", Invalid parameters"
}
amountOut := new(big.Int).SetBytes(params[160:192]) // approximation
amountOutEth := new(big.Float).Quo(new(big.Float).SetInt(amountOut), big.NewFloat(1e18))
return fmt.Sprintf(", AmountOut: %s tokens", amountOutEth.Text('f', 6))
}
// decodeMulticall decodes UniswapV3 multicall parameters
func (p *ArbitrumL2Parser) decodeMulticall(params []byte) string {
if len(params) < 32 {
return ", Invalid parameters"
}
// Multicall contains an array of encoded function calls
// This is complex to decode without full ABI parsing
return fmt.Sprintf(", Multicall with %d bytes of data", len(params))
}
// decodeFunctionDataStructured extracts structured parameters from transaction input data
func (p *ArbitrumL2Parser) decodeFunctionDataStructured(funcInfo DEXFunctionSignature, inputData []byte) *SwapDetails {
if len(inputData) < 4 {
return &SwapDetails{IsValid: false}
}
// Skip the 4-byte function selector
params := inputData[4:]
switch funcInfo.Name {
case "swapExactTokensForTokens":
return p.decodeSwapExactTokensForTokensStructured(params)
case "swapTokensForExactTokens":
return p.decodeSwapTokensForExactTokensStructured(params)
case "swapExactETHForTokens":
return p.decodeSwapExactETHForTokensStructured(params)
case "swapExactTokensForETH":
return p.decodeSwapExactTokensForETHStructured(params)
case "exactInputSingle":
return p.decodeExactInputSingleStructured(params)
case "exactInput":
return p.decodeExactInputStructured(params)
case "exactOutputSingle":
return p.decodeExactOutputSingleStructured(params)
case "multicall":
return p.decodeMulticallStructured(params)
default:
return &SwapDetails{IsValid: false}
}
}
// decodeSwapExactTokensForTokensStructured decodes UniswapV2 swapExactTokensForTokens parameters
func (p *ArbitrumL2Parser) decodeSwapExactTokensForTokensStructured(params []byte) *SwapDetails {
if len(params) < 160 { // 5 parameters * 32 bytes each
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountIn: new(big.Int).SetBytes(params[0:32]),
AmountMin: new(big.Int).SetBytes(params[32:64]),
TokenIn: "unknown", // Would need to decode path array
TokenOut: "unknown", // Would need to decode path array
Deadline: new(big.Int).SetBytes(params[128:160]).Uint64(),
Recipient: fmt.Sprintf("0x%x", params[96:128]), // address is last 20 bytes
IsValid: true,
}
}
// decodeSwapExactTokensForETHStructured decodes UniswapV2 swapExactTokensForETH parameters
func (p *ArbitrumL2Parser) decodeSwapExactTokensForETHStructured(params []byte) *SwapDetails {
if len(params) < 64 {
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountIn: new(big.Int).SetBytes(params[0:32]),
AmountMin: new(big.Int).SetBytes(params[32:64]),
TokenIn: "unknown",
TokenOut: "ETH",
IsValid: true,
}
}
// decodeExactInputSingleStructured decodes UniswapV3 exactInputSingle parameters
func (p *ArbitrumL2Parser) decodeExactInputSingleStructured(params []byte) *SwapDetails {
if len(params) < 160 { // ExactInputSingleParams struct
return &SwapDetails{IsValid: false}
}
// Simplified decoding - real implementation would parse the struct properly
return &SwapDetails{
AmountIn: new(big.Int).SetBytes(params[128:160]),
TokenIn: fmt.Sprintf("0x%x", params[0:32]), // tokenIn
TokenOut: fmt.Sprintf("0x%x", params[32:64]), // tokenOut
Fee: uint32(new(big.Int).SetBytes(params[64:96]).Uint64()), // fee
Recipient: fmt.Sprintf("0x%x", params[96:128]), // recipient
IsValid: true,
}
}
// decodeSwapTokensForExactTokensStructured decodes UniswapV2 swapTokensForExactTokens parameters
func (p *ArbitrumL2Parser) decodeSwapTokensForExactTokensStructured(params []byte) *SwapDetails {
if len(params) < 160 {
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountOut: new(big.Int).SetBytes(params[0:32]),
AmountIn: new(big.Int).SetBytes(params[32:64]), // Max amount in
TokenIn: "unknown",
TokenOut: "unknown",
IsValid: true,
}
}
// decodeSwapExactETHForTokensStructured decodes UniswapV2 swapExactETHForTokens parameters
func (p *ArbitrumL2Parser) decodeSwapExactETHForTokensStructured(params []byte) *SwapDetails {
if len(params) < 32 {
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountMin: new(big.Int).SetBytes(params[0:32]),
TokenIn: "ETH",
TokenOut: "unknown",
IsValid: true,
}
}
// decodeExactInputStructured decodes UniswapV3 exactInput parameters
func (p *ArbitrumL2Parser) decodeExactInputStructured(params []byte) *SwapDetails {
if len(params) < 128 {
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountIn: new(big.Int).SetBytes(params[64:96]),
TokenIn: "unknown", // Would need to decode path
TokenOut: "unknown", // Would need to decode path
IsValid: true,
}
}
// decodeExactOutputSingleStructured decodes UniswapV3 exactOutputSingle parameters
func (p *ArbitrumL2Parser) decodeExactOutputSingleStructured(params []byte) *SwapDetails {
if len(params) < 160 {
return &SwapDetails{IsValid: false}
}
return &SwapDetails{
AmountOut: new(big.Int).SetBytes(params[160:192]),
TokenIn: fmt.Sprintf("0x%x", params[0:32]),
TokenOut: fmt.Sprintf("0x%x", params[32:64]),
IsValid: true,
}
}
// decodeMulticallStructured decodes UniswapV3 multicall parameters
func (p *ArbitrumL2Parser) decodeMulticallStructured(params []byte) *SwapDetails {
if len(params) < 32 {
return &SwapDetails{IsValid: false}
}
// For multicall, we'd need to decode the individual calls
// This is a placeholder
return &SwapDetails{
TokenIn: "unknown",
TokenOut: "unknown",
IsValid: true,
}
}
// calculateProfitWithOracle calculates profit estimation using the price oracle
func (p *ArbitrumL2Parser) calculateProfitWithOracle(swapDetails *SwapDetails) (float64, error) {
if p.oracle == nil {
return 0.0, fmt.Errorf("price oracle not available")
}
// Skip calculation for invalid swaps
if !swapDetails.IsValid || swapDetails.AmountIn == nil || swapDetails.AmountIn.Sign() == 0 {
return 0.0, nil
}
// Convert token addresses
var tokenIn, tokenOut common.Address
var err error
switch v := swapDetails.TokenIn.(type) {
case string:
if !common.IsHexAddress(v) {
return 0.0, fmt.Errorf("invalid tokenIn address: %s", v)
}
tokenIn = common.HexToAddress(v)
case common.Address:
tokenIn = v
default:
return 0.0, fmt.Errorf("unsupported tokenIn type: %T", v)
}
switch v := swapDetails.TokenOut.(type) {
case string:
if !common.IsHexAddress(v) {
return 0.0, fmt.Errorf("invalid tokenOut address: %s", v)
}
tokenOut = common.HexToAddress(v)
case common.Address:
tokenOut = v
default:
return 0.0, fmt.Errorf("unsupported tokenOut type: %T", v)
}
// Create price request
priceReq := &oracle.PriceRequest{
TokenIn: tokenIn,
TokenOut: tokenOut,
AmountIn: swapDetails.AmountIn,
Timestamp: time.Now(),
}
// Get price from oracle with timeout
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
priceResp, err := p.oracle.GetPrice(ctx, priceReq)
if err != nil {
return 0.0, fmt.Errorf("oracle price lookup failed: %w", err)
}
if !priceResp.Valid {
return 0.0, fmt.Errorf("oracle returned invalid price")
}
// Convert amounts to float for USD calculation (assuming 18 decimals)
amountInFloat := new(big.Float).Quo(new(big.Float).SetInt(swapDetails.AmountIn), big.NewFloat(1e18))
amountOutFloat := new(big.Float).Quo(new(big.Float).SetInt(priceResp.AmountOut), big.NewFloat(1e18))
amountInVal, _ := amountInFloat.Float64()
amountOutVal, _ := amountOutFloat.Float64()
// Estimate profit based on price difference
// This is a simplified calculation - in reality you'd need:
// 1. USD prices for both tokens
// 2. Gas cost estimation
// 3. Market impact analysis
// 4. Arbitrage opportunity assessment
// For now, calculate potential arbitrage profit as percentage of swap value
profitPercentage := 0.0
if amountInVal > 0 {
// Simple profit estimation based on price impact
slippageBps := priceResp.SlippageBps.Int64()
if slippageBps > 0 {
// Higher slippage = higher potential arbitrage profit
profitPercentage = float64(slippageBps) / 10000.0 * 0.1 // 10% of slippage as profit estimate
}
}
// Convert to USD estimate (simplified - assumes token has $1 base value)
estimatedProfitUSD := amountInVal * profitPercentage
p.logger.Debug(fmt.Sprintf("Calculated profit for swap %s->%s: amountIn=%.6f, amountOut=%.6f, slippage=%d bps, profit=$%.2f",
tokenIn.Hex()[:8], tokenOut.Hex()[:8], amountInVal, amountOutVal, slippageBps, estimatedProfitUSD))
return estimatedProfitUSD, nil
}
// Close closes the RPC connection
func (p *ArbitrumL2Parser) Close() {
if p.client != nil {
p.client.Close()
}
}