Files
mev-beta/pkg/market/pipeline.go
2025-09-16 11:05:47 -05:00

570 lines
16 KiB
Go

package market
import (
"context"
"fmt"
"math/big"
"sync"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethclient"
"github.com/fraktal/mev-beta/internal/config"
"github.com/fraktal/mev-beta/internal/logger"
"github.com/fraktal/mev-beta/pkg/events"
"github.com/fraktal/mev-beta/pkg/scanner"
"github.com/fraktal/mev-beta/pkg/uniswap"
"github.com/fraktal/mev-beta/pkg/validation"
"github.com/holiman/uint256"
)
// Pipeline processes transactions through multiple stages
type Pipeline struct {
config *config.BotConfig
logger *logger.Logger
marketMgr *MarketManager
scanner *scanner.MarketScanner
stages []PipelineStage
bufferSize int
concurrency int
eventParser *events.EventParser
validator *validation.InputValidator
ethClient *ethclient.Client // Add Ethereum client for fetching receipts
}
// PipelineStage represents a stage in the processing pipeline
type PipelineStage func(context.Context, <-chan *events.Event, chan<- *events.Event) error
// NewPipeline creates a new transaction processing pipeline
func NewPipeline(
cfg *config.BotConfig,
logger *logger.Logger,
marketMgr *MarketManager,
scanner *scanner.MarketScanner,
ethClient *ethclient.Client, // Add Ethereum client parameter
) *Pipeline {
pipeline := &Pipeline{
config: cfg,
logger: logger,
marketMgr: marketMgr,
scanner: scanner,
bufferSize: cfg.ChannelBufferSize,
concurrency: cfg.MaxWorkers,
eventParser: events.NewEventParser(),
validator: validation.NewInputValidator(),
ethClient: ethClient, // Store the Ethereum client
}
// Add default stages
pipeline.AddStage(TransactionDecoderStage(cfg, logger, marketMgr, pipeline.validator, pipeline.ethClient))
return pipeline
}
// AddDefaultStages adds the default processing stages to the pipeline
func (p *Pipeline) AddDefaultStages() {
p.AddStage(TransactionDecoderStage(p.config, p.logger, p.marketMgr, p.validator, p.ethClient))
p.AddStage(MarketAnalysisStage(p.config, p.logger, p.marketMgr, p.validator))
p.AddStage(ArbitrageDetectionStage(p.config, p.logger, p.marketMgr, p.validator))
}
// AddStage adds a processing stage to the pipeline
func (p *Pipeline) AddStage(stage PipelineStage) {
p.stages = append(p.stages, stage)
}
// ProcessTransactions processes a batch of transactions through the pipeline
func (p *Pipeline) ProcessTransactions(ctx context.Context, transactions []*types.Transaction, blockNumber uint64, timestamp uint64) error {
if len(p.stages) == 0 {
return fmt.Errorf("no pipeline stages configured")
}
// Parse events from transaction receipts
eventChan := make(chan *events.Event, p.bufferSize)
// Parse transactions in a goroutine
go func() {
defer close(eventChan)
for _, tx := range transactions {
// Validate transaction input
if err := p.validator.ValidateTransaction(tx); err != nil {
p.logger.Warn(fmt.Sprintf("Invalid transaction %s: %v", tx.Hash().Hex(), err))
continue
}
// Fetch transaction receipt
receipt, err := p.ethClient.TransactionReceipt(ctx, tx.Hash())
if err != nil {
p.logger.Error(fmt.Sprintf("Error fetching receipt for transaction %s: %v", tx.Hash().Hex(), err))
continue
}
// Parse events from receipt logs
events, err := p.eventParser.ParseTransactionReceipt(receipt, blockNumber, timestamp)
if err != nil {
p.logger.Error(fmt.Sprintf("Error parsing receipt for transaction %s: %v", tx.Hash().Hex(), err))
continue
}
for _, event := range events {
// Validate the parsed event
if err := p.validator.ValidateEvent(event); err != nil {
p.logger.Warn(fmt.Sprintf("Invalid event from transaction %s: %v", tx.Hash().Hex(), err))
continue
}
select {
case eventChan <- event:
case <-ctx.Done():
return
}
}
}
}()
// Process through each stage
var currentChan <-chan *events.Event = eventChan
for i, stage := range p.stages {
// Create output channel for this stage
outputChan := make(chan *events.Event, p.bufferSize)
go func(stage PipelineStage, input <-chan *events.Event, output chan<- *events.Event, stageIndex int) {
err := stage(ctx, input, output)
if err != nil {
p.logger.Error(fmt.Sprintf("Pipeline stage %d error: %v", stageIndex, err))
}
}(stage, currentChan, outputChan, i)
currentChan = outputChan
}
// Process the final output
if currentChan != nil {
go func() {
defer func() {
if r := recover(); r != nil {
p.logger.Error(fmt.Sprintf("Final output processor panic recovered: %v", r))
}
}()
p.processSwapDetails(ctx, currentChan)
}()
}
return nil
}
// processSwapDetails processes the final output of the pipeline
func (p *Pipeline) processSwapDetails(ctx context.Context, eventDetails <-chan *events.Event) {
for {
select {
case event, ok := <-eventDetails:
if !ok {
return // Channel closed
}
// Submit to the market scanner for processing
p.scanner.SubmitEvent(*event)
case <-ctx.Done():
return
}
}
}
// TransactionDecoderStage decodes transactions to identify swap opportunities
func TransactionDecoderStage(
cfg *config.BotConfig,
logger *logger.Logger,
marketMgr *MarketManager,
validator *validation.InputValidator,
ethClient *ethclient.Client, // Add Ethereum client parameter
) PipelineStage {
return func(ctx context.Context, input <-chan *events.Event, output chan<- *events.Event) error {
var wg sync.WaitGroup
// Process events concurrently
for i := 0; i < cfg.MaxWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case event, ok := <-input:
if !ok {
return // Channel closed
}
// Process the event (in this case, it's already decoded)
// In a real implementation, you might do additional processing here
if event != nil {
// Additional validation at the stage level
if err := validator.ValidateEvent(event); err != nil {
logger.Warn(fmt.Sprintf("Event validation failed in decoder stage: %v", err))
continue
}
select {
case output <- event:
case <-ctx.Done():
return
}
}
case <-ctx.Done():
return
}
}
}()
}
// Wait for all workers to finish, then close the output channel
go func() {
wg.Wait()
// Safely close the output channel
defer func() {
if r := recover(); r != nil {
logger.Debug("Channel already closed in TransactionDecoderStage")
}
}()
select {
case <-ctx.Done():
// Context cancelled, don't close channel as it might be used elsewhere
default:
close(output)
}
}()
return nil
}
}
// MarketAnalysisStage performs market analysis on event details
func MarketAnalysisStage(
cfg *config.BotConfig,
logger *logger.Logger,
marketMgr *MarketManager,
validator *validation.InputValidator,
) PipelineStage {
return func(ctx context.Context, input <-chan *events.Event, output chan<- *events.Event) error {
var wg sync.WaitGroup
// Process events concurrently
for i := 0; i < cfg.MaxWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case event, ok := <-input:
if !ok {
return // Channel closed
}
// Validate event before processing
if err := validator.ValidateEvent(event); err != nil {
logger.Warn(fmt.Sprintf("Event validation failed in analysis stage: %v", err))
continue
}
// Only process swap events
if event.Type != events.Swap {
// Forward non-swap events without processing
select {
case output <- event:
case <-ctx.Done():
return
}
continue
}
// Get pool data from market manager
poolData, err := marketMgr.GetPool(ctx, event.PoolAddress)
if err != nil {
logger.Error(fmt.Sprintf("Error getting pool data for %s: %v", event.PoolAddress, err))
// Forward the event even if we can't get pool data
select {
case output <- event:
case <-ctx.Done():
return
}
continue
}
// Calculate price impact using Uniswap V3 math
priceImpact, err := calculatePriceImpact(event, poolData)
if err != nil {
logger.Error(fmt.Sprintf("Error calculating price impact for pool %s: %v", event.PoolAddress, err))
// Forward the event even if we can't calculate price impact
select {
case output <- event:
case <-ctx.Done():
return
}
continue
}
// Add price impact to the event
// Note: In a real implementation, you might want to create a new struct
// that extends EventDetails with additional fields
logger.Debug(fmt.Sprintf("Price impact for pool %s: %f", event.PoolAddress, priceImpact))
// Forward the processed event
select {
case output <- event:
case <-ctx.Done():
return
}
case <-ctx.Done():
return
}
}
}()
}
// Wait for all workers to finish, then close the output channel
go func() {
wg.Wait()
// Safely close the output channel
defer func() {
if r := recover(); r != nil {
logger.Debug("Channel already closed in MarketAnalysisStage")
}
}()
select {
case <-ctx.Done():
// Context cancelled, don't close channel as it might be used elsewhere
default:
close(output)
}
}()
return nil
}
}
// calculatePriceImpact calculates the price impact of a swap using Uniswap V3 math
func calculatePriceImpact(event *events.Event, poolData *PoolData) (float64, error) {
// Convert event amounts to uint256 for calculations
amount0In := uint256.NewInt(0)
amount0In.SetFromBig(event.Amount0)
amount1In := uint256.NewInt(0)
amount1In.SetFromBig(event.Amount1)
// Determine which token is being swapped in
var amountIn *uint256.Int
if amount0In.Cmp(uint256.NewInt(0)) > 0 {
amountIn = amount0In
} else {
amountIn = amount1In
}
// If no amount is being swapped in, return 0 impact
if amountIn.Cmp(uint256.NewInt(0)) == 0 {
return 0.0, nil
}
// Calculate price impact as a percentage of liquidity
// priceImpact = amountIn / liquidity
liquidity := poolData.Liquidity
// If liquidity is 0, we can't calculate impact
if liquidity.Cmp(uint256.NewInt(0)) == 0 {
return 0.0, nil
}
// Calculate impact
impact := new(uint256.Int).Div(amountIn, liquidity)
// Convert to float64 for percentage
impactFloat := new(big.Float).SetInt(impact.ToBig())
percentage, _ := impactFloat.Float64()
// Convert to percentage (multiply by 100)
return percentage * 100.0, nil
}
// ArbitrageDetectionStage detects arbitrage opportunities
func ArbitrageDetectionStage(
cfg *config.BotConfig,
logger *logger.Logger,
marketMgr *MarketManager,
validator *validation.InputValidator,
) PipelineStage {
return func(ctx context.Context, input <-chan *events.Event, output chan<- *events.Event) error {
var wg sync.WaitGroup
// Process events concurrently
for i := 0; i < cfg.MaxWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case event, ok := <-input:
if !ok {
return // Channel closed
}
// Validate event before processing
if err := validator.ValidateEvent(event); err != nil {
logger.Warn(fmt.Sprintf("Event validation failed in arbitrage detection stage: %v", err))
continue
}
// Only process swap events
if event.Type != events.Swap {
// Forward non-swap events without processing
select {
case output <- event:
case <-ctx.Done():
return
}
continue
}
// Look for arbitrage opportunities
opportunities, err := findArbitrageOpportunities(ctx, event, marketMgr, logger)
if err != nil {
logger.Error(fmt.Sprintf("Error finding arbitrage opportunities for pool %s: %v", event.PoolAddress, err))
// Forward the event even if we encounter an error
select {
case output <- event:
case <-ctx.Done():
return
}
continue
}
// Log any found opportunities
if len(opportunities) > 0 {
logger.Info(fmt.Sprintf("Found %d arbitrage opportunities for pool %s", len(opportunities), event.PoolAddress))
for _, opp := range opportunities {
logger.Info(fmt.Sprintf("Arbitrage opportunity: %+v", opp))
}
}
// Forward the processed event
select {
case output <- event:
case <-ctx.Done():
return
}
case <-ctx.Done():
return
}
}
}()
}
// Wait for all workers to finish, then close the output channel
go func() {
wg.Wait()
// Safely close the output channel
defer func() {
if r := recover(); r != nil {
logger.Debug("Channel already closed in ArbitrageDetectionStage")
}
}()
select {
case <-ctx.Done():
// Context cancelled, don't close channel as it might be used elsewhere
default:
close(output)
}
}()
return nil
}
}
// findArbitrageOpportunities looks for arbitrage opportunities based on a swap event
func findArbitrageOpportunities(ctx context.Context, event *events.Event, marketMgr *MarketManager, logger *logger.Logger) ([]scanner.ArbitrageOpportunity, error) {
opportunities := make([]scanner.ArbitrageOpportunity, 0)
// Get all pools for the same token pair
pools := marketMgr.GetPoolsByTokens(event.Token0, event.Token1)
// If we don't have multiple pools, we can't do arbitrage
if len(pools) < 2 {
return opportunities, nil
}
// Get the pool that triggered the event
// Find the pool that triggered the event
var eventPool *PoolData
for _, pool := range pools {
if pool.Address == event.PoolAddress {
eventPool = pool
break
}
}
// If we can't find the event pool, return
if eventPool == nil {
return opportunities, nil
}
// Convert sqrtPriceX96 to price for the event pool
eventPoolPrice := uniswap.SqrtPriceX96ToPrice(eventPool.SqrtPriceX96.ToBig())
// Compare with other pools
for _, pool := range pools {
// Skip the event pool
if pool.Address == event.PoolAddress {
continue
}
// Convert sqrtPriceX96 to price for comparison pool
compPoolPrice := uniswap.SqrtPriceX96ToPrice(pool.SqrtPriceX96.ToBig())
// Calculate potential profit (simplified)
// In practice, this would involve more complex calculations
profit := new(big.Float).Sub(compPoolPrice, eventPoolPrice)
// If there's a price difference, we might have an opportunity
if profit.Cmp(big.NewFloat(0)) > 0 {
// Calculate realistic profit based on price difference and liquidity
priceDiffFloat, _ := profit.Float64()
estimatedAmount := big.NewInt(1000000) // 1 USDC equivalent test amount
// Estimate actual profit based on AMM formulas
profitBigInt := big.NewInt(int64(priceDiffFloat * 1000000)) // Convert to wei-like precision
// Estimate gas costs for arbitrage transaction (typical multi-hop swap)
gasPrice := big.NewInt(1000000000) // 1 gwei
gasUnits := big.NewInt(300000) // ~300k gas for complex arbitrage
gasEstimate := new(big.Int).Mul(gasPrice, gasUnits)
// Calculate net profit after gas
netProfit := new(big.Int).Sub(profitBigInt, gasEstimate)
// Only include if profitable after gas costs
if netProfit.Sign() > 0 {
// Calculate ROI
roi := 0.0
if estimatedAmount.Sign() > 0 {
roiFloat := new(big.Float).Quo(new(big.Float).SetInt(netProfit), new(big.Float).SetInt(estimatedAmount))
roi, _ = roiFloat.Float64()
roi *= 100 // Convert to percentage
}
opp := scanner.ArbitrageOpportunity{
Path: []string{event.Token0.Hex(), event.Token1.Hex()},
Pools: []string{event.PoolAddress.Hex(), pool.Address.Hex()},
Profit: netProfit,
GasEstimate: gasEstimate,
ROI: roi,
Protocol: event.Protocol,
}
opportunities = append(opportunities, opp)
}
}
}
return opportunities, nil
}