- Add new math package with optimized implementations for major DEX protocols - Implement Uniswap V2, V3, V4, Curve, Kyber, Balancer, and Algebra mathematical functions - Optimize Uniswap V3 pricing functions with caching and uint256 optimizations - Add lookup table optimizations for frequently used calculations - Implement price impact and slippage calculation functions - Add comprehensive benchmarks showing 12-24% performance improvements - Fix test expectations to use correct mathematical formulas - Document mathematical optimization strategies and results
113 lines
2.3 KiB
Go
113 lines
2.3 KiB
Go
package lookup
|
|
|
|
import (
|
|
"math/big"
|
|
"sync"
|
|
)
|
|
|
|
var (
|
|
// Lookup tables for frequently used values
|
|
sqrt10001Table map[int]*big.Float
|
|
q96Table *big.Int
|
|
q192Table *big.Int
|
|
|
|
// Once variables for initializing lookup tables
|
|
sqrt10001Once sync.Once
|
|
q96Once sync.Once
|
|
)
|
|
|
|
// initSqrt10001Table initializes the lookup table for sqrt(1.0001^n)
|
|
func initSqrt10001Table() {
|
|
sqrt10001Once.Do(func() {
|
|
sqrt10001Table = make(map[int]*big.Float)
|
|
|
|
// Precompute values for ticks in the range [-100000, 100000]
|
|
// This range should cover most practical use cases
|
|
for i := -100000; i <= 100000; i++ {
|
|
// Calculate sqrt(1.0001^i)
|
|
base := 1.0001
|
|
power := float64(i) / 2.0
|
|
result := pow(base, power)
|
|
|
|
// Store in lookup table
|
|
sqrt10001Table[i] = new(big.Float).SetFloat64(result)
|
|
}
|
|
})
|
|
}
|
|
|
|
// initQTables initializes the lookup tables for Q96 and Q192
|
|
func initQTables() {
|
|
q96Once.Do(func() {
|
|
// Q96 = 2^96
|
|
q96Table = new(big.Int).Exp(big.NewInt(2), big.NewInt(96), nil)
|
|
|
|
// Q192 = 2^192 = (2^96)^2
|
|
q192Table = new(big.Int).Exp(big.NewInt(2), big.NewInt(192), nil)
|
|
})
|
|
}
|
|
|
|
// GetSqrt10001 retrieves the precomputed sqrt(1.0001^n) value
|
|
func GetSqrt10001(n int) *big.Float {
|
|
initSqrt10001Table()
|
|
|
|
// Check if value is in lookup table
|
|
if val, ok := sqrt10001Table[n]; ok {
|
|
return val
|
|
}
|
|
|
|
// If not in lookup table, compute it
|
|
base := 1.0001
|
|
power := float64(n) / 2.0
|
|
result := pow(base, power)
|
|
|
|
// Add to lookup table for future use
|
|
sqrt10001Table[n] = new(big.Float).SetFloat64(result)
|
|
|
|
return sqrt10001Table[n]
|
|
}
|
|
|
|
// GetQ96 retrieves the precomputed Q96 value (2^96)
|
|
func GetQ96() *big.Int {
|
|
initQTables()
|
|
return q96Table
|
|
}
|
|
|
|
// GetQ192 retrieves the precomputed Q192 value (2^192)
|
|
func GetQ192() *big.Int {
|
|
initQTables()
|
|
return q192Table
|
|
}
|
|
|
|
// Helper function for computing powers efficiently
|
|
func pow(base, exp float64) float64 {
|
|
if exp == 0 {
|
|
return 1
|
|
}
|
|
if exp == 1 {
|
|
return base
|
|
}
|
|
if exp == 2 {
|
|
return base * base
|
|
}
|
|
|
|
// For other values, use exponentiation by squaring
|
|
return powInt(base, int(exp))
|
|
}
|
|
|
|
// Integer power function using exponentiation by squaring
|
|
func powInt(base float64, exp int) float64 {
|
|
if exp < 0 {
|
|
return 1.0 / powInt(base, -exp)
|
|
}
|
|
|
|
result := 1.0
|
|
for exp > 0 {
|
|
if exp&1 == 1 {
|
|
result *= base
|
|
}
|
|
base *= base
|
|
exp >>= 1
|
|
}
|
|
return result
|
|
}
|