- Created MODULARITY_REQUIREMENTS.md with component independence rules - Created PROTOCOL_SUPPORT_REQUIREMENTS.md covering 13+ protocols - Created TESTING_REQUIREMENTS.md enforcing 100% coverage - Updated CLAUDE.md with strict feature/v2/* branch strategy Requirements documented: - Component modularity (standalone + integrated) - 100% test coverage enforcement (non-negotiable) - All DEX protocols (Uniswap V2/V3/V4, Curve, Balancer V2/V3, Kyber Classic/Elastic, Camelot V2/V3 with all Algebra variants) - Proper decimal handling (critical for calculations) - Pool caching with multi-index and O(1) mappings - Market building with essential arbitrage detection values - Price movement detection with decimal precision - Transaction building (single and batch execution) - Pool discovery and caching - Comprehensive validation at all layers 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
19 KiB
19 KiB
V2 Protocol Support Requirements
Critical Requirement: Complete Protocol Coverage
Every protocol MUST be parsed correctly with 100% accuracy and 100% test coverage.
Supported DEX Protocols (Complete List)
Uniswap Family
-
Uniswap V2
- Constant product AMM (x * y = k)
- Event:
Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to) - Pool info: token0, token1, reserves
- Fee: 0.3% (30 basis points)
-
Uniswap V3
- Concentrated liquidity AMM
- Event:
Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick) - Pool info: token0, token1, fee (500/3000/10000), tickSpacing, sqrtPriceX96, liquidity, tick
- CRITICAL: Amounts are signed (int256), handle negative values correctly
-
Uniswap V4 (planned)
- Hooks-based architecture
- Event: TBD (monitor for mainnet deployment)
- Pool info: Dynamic based on hooks
Curve Finance
- Curve StableSwap
- Stable asset AMM
- Event:
TokenExchange(address indexed buyer, int128 sold_id, uint256 tokens_sold, int128 bought_id, uint256 tokens_bought) - Pool info: coins array, A (amplification coefficient), fee
- CRITICAL: Use int128 for token IDs, proper decimal handling
Balancer
-
Balancer V2
- Weighted pool AMM
- Event:
Swap(bytes32 indexed poolId, address indexed tokenIn, address indexed tokenOut, uint256 amountIn, uint256 amountOut) - Pool info: poolId, tokens array, weights, swapFee
- CRITICAL: Uses poolId instead of pool address
-
Balancer V3 (if deployed on Arbitrum)
- Next-gen weighted pools
- Event: Monitor for deployment
- Pool info: TBD
Kyber Network
-
Kyber Classic
- Dynamic reserve AMM
- Event:
KyberTrade(address indexed src, address indexed dest, uint srcAmount, uint dstAmount) - Pool info: reserveId, tokens, rate
-
Kyber Elastic
- Concentrated liquidity (similar to Uniswap V3)
- Event:
Swap(address indexed sender, address indexed recipient, int256 deltaQty0, int256 deltaQty1, uint160 sqrtP, uint128 liquidity, int24 currentTick) - Pool info: token0, token1, swapFeeUnits, tickDistance
- CRITICAL: Different field names than Uniswap V3 but similar math
Camelot (Arbitrum Native)
-
Camelot V2
- Uniswap V2 fork with dynamic fees
- Event:
Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to) - Pool info: token0, token1, stableSwap (boolean), fee0, fee1
- CRITICAL: Fees can be different for token0 and token1
-
Camelot V3 (Algebra V1)
- Event:
Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick) - Pool info: token0, token1, fee, tickSpacing (from factory)
- Algebra V1 specific
- Event:
-
Camelot V3 (Algebra V1.9)
- Enhanced Algebra with adaptive fees
- Event: Same as Algebra V1 but with
communityFeefield - Pool info: token0, token1, fee, communityFee, tickSpacing
- CRITICAL: Fee can be dynamic
-
Camelot V3 (Algebra Integral)
- Latest Algebra version with plugins
- Event:
Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick, uint16 fee) - Pool info: token0, token1, fee (in event!), tickSpacing, plugin address
- CRITICAL: Fee is emitted in event, not stored in pool
-
Camelot V3 (Algebra Directional - All Versions)
- Directional liquidity (different fees for buy/sell)
- Event:
Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick, uint16 feeZeroToOne, uint16 feeOneToZero) - Pool info: token0, token1, feeZeroToOne, feeOneToZero, tickSpacing
- CRITICAL: Two separate fees based on direction
Required Pool Information Extraction
For EVERY pool discovered, we MUST extract:
Essential Fields
address- Pool contract addresstoken0- First token address (MUST NOT be zero address)token1- Second token address (MUST NOT be zero address)protocol- Protocol type (UniswapV2, UniswapV3, etc.)poolType- Pool type (ConstantProduct, Concentrated, StableSwap, etc.)
Protocol-Specific Fields
V2-Style (Uniswap V2, SushiSwap, Camelot V2)
reserve0- Token0 reservesreserve1- Token1 reservesfee- Fee in basis points (usually 30 = 0.3%)
V3-Style (Uniswap V3, Kyber Elastic, Camelot V3)
sqrtPriceX96- Current price (Q64.96 format)liquidity- Current liquiditytick- Current ticktickSpacing- Tick spacing (from factory)fee- Fee tier (500/3000/10000) OR dynamic fee
Curve
A- Amplification coefficientfee- Fee in basis pointscoins- Array of coin addresses (can be > 2)
Balancer
poolId- Vault pool ID (bytes32)tokens- Array of token addressesweights- Array of token weightsswapFee- Swap fee percentage
Metadata Fields
factory- Factory contract that created this poolcreatedBlock- Block number when pool was createdcreatedTx- Transaction hash of pool creationlastUpdated- Timestamp of last updatetoken0Decimals- Decimals for token0 (CRITICAL for calculations)token1Decimals- Decimals for token1 (CRITICAL for calculations)token0Symbol- Symbol for token0 (for logging)token1Symbol- Symbol for token1 (for logging)
Parsing Requirements
1. Sequencer Event Reading
type SequencerReader interface {
// Subscribe to new blocks
Subscribe(ctx context.Context) (<-chan *types.Block, error)
// Get full transaction receipts
GetReceipts(ctx context.Context, txHashes []common.Hash) ([]*types.Receipt, error)
// Parse block for DEX transactions
ParseBlock(block *types.Block) ([]*Transaction, error)
}
2. Multi-Protocol Parser
type ProtocolParser interface {
// Identify if transaction is for this protocol
IsProtocolTransaction(tx *types.Transaction) bool
// Parse swap event
ParseSwapEvent(log *types.Log) (*SwapEvent, error)
// Parse mint/burn events
ParseLiquidityEvent(log *types.Log) (*LiquidityEvent, error)
// Extract pool info from logs
ExtractPoolInfo(logs []*types.Log) (*PoolInfo, error)
// Validate parsed data
Validate(event *SwapEvent) error
}
type SwapEvent struct {
PoolAddress common.Address
Token0 common.Address // MUST NOT be zero
Token1 common.Address // MUST NOT be zero
Amount0In *big.Int // MUST NOT be nil or zero (one of In/Out)
Amount0Out *big.Int
Amount1In *big.Int // MUST NOT be nil or zero (one of In/Out)
Amount1Out *big.Int
Sender common.Address
Recipient common.Address
TxHash common.Hash
BlockNumber uint64
LogIndex uint
Timestamp uint64
// V3-specific
SqrtPriceX96 *big.Int
Liquidity *big.Int
Tick int24
// Protocol identification
Protocol Protocol
PoolType PoolType
}
3. Amount Parsing Rules
CRITICAL: Proper Decimal Handling
// Example: Parse Uniswap V2 swap
func (p *UniswapV2Parser) ParseSwap(log *types.Log) (*SwapEvent, error) {
// Decode event
event := new(UniswapV2SwapEvent)
err := p.abi.UnpackIntoInterface(event, "Swap", log.Data)
// Get token decimals (CRITICAL!)
poolInfo := p.cache.GetPool(log.Address)
token0Decimals := poolInfo.Token0Decimals
token1Decimals := poolInfo.Token1Decimals
// MUST use proper decimal scaling
amount0In := ScaleAmount(event.Amount0In, token0Decimals)
amount0Out := ScaleAmount(event.Amount0Out, token0Decimals)
amount1In := ScaleAmount(event.Amount1In, token1Decimals)
amount1Out := ScaleAmount(event.Amount1Out, token1Decimals)
return &SwapEvent{
Amount0In: amount0In,
Amount0Out: amount0Out,
Amount1In: amount1In,
Amount1Out: amount1Out,
}
}
// Decimal scaling helper
func ScaleAmount(amount *big.Int, decimals uint8) *big.Int {
// Scale to 18 decimals for internal representation
scale := new(big.Int).Exp(
big.NewInt(10),
big.NewInt(int64(18 - decimals)),
nil,
)
return new(big.Int).Mul(amount, scale)
}
Pool Discovery Requirements
1. Factory Event Monitoring
type PoolDiscovery interface {
// Monitor factory for pool creation
MonitorFactory(ctx context.Context, factoryAddress common.Address) error
// Discover pools from transaction
DiscoverFromTransaction(tx *types.Transaction, receipt *types.Receipt) ([]*PoolInfo, error)
// Verify pool exists and get info
VerifyPool(ctx context.Context, poolAddress common.Address) (*PoolInfo, error)
// Save discovered pool
SavePool(pool *PoolInfo) error
}
2. Pool Caching Strategy
type PoolCache interface {
// Add pool to cache
Add(pool *PoolInfo) error
// Get pool by address (O(1))
Get(address common.Address) (*PoolInfo, error)
// Get pools by token pair (O(1))
GetByTokenPair(token0, token1 common.Address) ([]*PoolInfo, error)
// Get pools by protocol (O(1))
GetByProtocol(protocol Protocol) ([]*PoolInfo, error)
// Get top pools by liquidity
GetTopByLiquidity(limit int) ([]*PoolInfo, error)
// Update pool data
Update(address common.Address, updates *PoolUpdates) error
// Save to persistent storage
SaveToDisk(path string) error
// Load from persistent storage
LoadFromDisk(path string) error
}
3. Market Building with Mapping
type MarketBuilder interface {
// Build market from pools
BuildMarket(pools []*PoolInfo) (*Market, error)
// Update market on new swap
UpdateOnSwap(market *Market, swap *SwapEvent) (*PriceMovement, error)
// Get market by token pair (using mapping for O(1) access)
GetMarket(token0, token1 common.Address) (*Market, error)
}
type Market struct {
Token0 common.Address
Token1 common.Address
Pools map[common.Address]*PoolState // Mapping for O(1) access
BestBid *big.Float // Best price to buy token0
BestAsk *big.Float // Best price to sell token0
MidPrice *big.Float // Mid-market price
Liquidity *big.Int // Total liquidity
LastUpdate uint64 // Timestamp
}
type PoolState struct {
Address common.Address
Protocol Protocol
CurrentPrice *big.Float // With proper decimals
Reserve0 *big.Int
Reserve1 *big.Int
Fee uint32
// V3-specific
SqrtPriceX96 *big.Int
Liquidity *big.Int
Tick int24
}
4. Price Movement Detection
type PriceMovement struct {
Market *Market
OldPrice *big.Float // Before swap
NewPrice *big.Float // After swap
PriceChange *big.Float // Absolute change
PercentMove float64 // Percentage movement
TriggeredBy *SwapEvent
Timestamp uint64
// Arbitrage opportunity flag
IsArbitrageOpportunity bool
ExpectedProfit *big.Float
}
// CRITICAL: Proper decimal handling in price calculation
func CalculatePriceMovement(market *Market, swap *SwapEvent) (*PriceMovement, error) {
oldPrice := market.MidPrice
// Update pool state with proper decimals
pool := market.Pools[swap.PoolAddress]
pool.Reserve0 = new(big.Int).Sub(pool.Reserve0, swap.Amount0Out)
pool.Reserve0 = new(big.Int).Add(pool.Reserve0, swap.Amount0In)
pool.Reserve1 = new(big.Int).Sub(pool.Reserve1, swap.Amount1Out)
pool.Reserve1 = new(big.Int).Add(pool.Reserve1, swap.Amount1In)
// Calculate new price with EXACT decimal precision
newPrice := CalculatePrice(pool.Reserve0, pool.Reserve1,
market.Token0Decimals, market.Token1Decimals)
// Calculate percentage movement
priceChange := new(big.Float).Sub(newPrice, oldPrice)
percentMove := new(big.Float).Quo(priceChange, oldPrice)
percentMove.Mul(percentMove, big.NewFloat(100))
percent, _ := percentMove.Float64()
return &PriceMovement{
Market: market,
OldPrice: oldPrice,
NewPrice: newPrice,
PriceChange: priceChange,
PercentMove: percent,
TriggeredBy: swap,
Timestamp: swap.Timestamp,
}
}
Arbitrage Detection Requirements
1. Essential Market Values
type ArbitrageMarket struct {
// Token pair
TokenA common.Address
TokenB common.Address
// All pools for this pair
Pools map[common.Address]*PoolState // O(1) access
// Price quotes from each pool
Quotes map[common.Address]*Quote
// Liquidity depth
LiquidityDepth map[common.Address]*LiquidityBracket
// Best execution path
BestBuyPool common.Address
BestSellPool common.Address
// Arbitrage opportunity
SpreadPercent float64
ExpectedProfit *big.Float
OptimalAmount *big.Int
}
type Quote struct {
Pool common.Address
InputAmount *big.Int
OutputAmount *big.Int
Price *big.Float // With exact decimals
Fee uint32
Slippage float64 // Expected slippage %
}
type LiquidityBracket struct {
Pool common.Address
Amounts []*big.Int // Different trade sizes
Outputs []*big.Int // Expected outputs
Slippages []float64 // Slippage at each amount
}
2. Arbitrage Calculator
type ArbitrageCalculator interface {
// Find arbitrage opportunities
FindOpportunities(market *ArbitrageMarket) ([]*Opportunity, error)
// Calculate optimal trade size
CalculateOptimalSize(opp *Opportunity) (*big.Int, error)
// Calculate expected profit (after gas)
CalculateProfit(opp *Opportunity, tradeSize *big.Int) (*big.Float, error)
// Build execution transaction
BuildTransaction(opp *Opportunity, tradeSize *big.Int) (*types.Transaction, error)
}
type Opportunity struct {
Market *ArbitrageMarket
BuyPool common.Address
SellPool common.Address
BuyPrice *big.Float // Exact decimals
SellPrice *big.Float // Exact decimals
Spread float64 // Percentage
OptimalAmount *big.Int
ExpectedProfit *big.Float // After fees and gas
GasCost *big.Int
NetProfit *big.Float // After ALL costs
Confidence float64 // 0-1 confidence score
}
Transaction Building Requirements
1. Single Execution
type SingleExecutor interface {
// Execute single arbitrage trade
Execute(ctx context.Context, opp *Opportunity) (*types.Transaction, error)
// Build transaction data
BuildTxData(opp *Opportunity) ([]byte, error)
// Estimate gas
EstimateGas(ctx context.Context, txData []byte) (uint64, error)
// Sign and send
SignAndSend(ctx context.Context, tx *types.Transaction) (common.Hash, error)
}
2. Batch Execution
type BatchExecutor interface {
// Execute multiple arbitrage trades in one transaction
BatchExecute(ctx context.Context, opps []*Opportunity) (*types.Transaction, error)
// Build multicall data
BuildMulticall(opps []*Opportunity) ([]byte, error)
// Optimize batch order for maximum profit
OptimizeBatchOrder(opps []*Opportunity) []*Opportunity
// Calculate batch gas savings
CalculateGasSavings(opps []*Opportunity) (*big.Int, error)
}
// Example multicall structure
type Multicall struct {
Targets []common.Address // Contract addresses
Calldatas [][]byte // Call data for each
Values []*big.Int // ETH value for each
}
Validation Requirements
1. Pool Data Validation
// MUST validate ALL fields
func ValidatePoolInfo(pool *PoolInfo) error {
if pool.Address == (common.Address{}) {
return errors.New("pool address is zero")
}
if pool.Token0 == (common.Address{}) {
return errors.New("token0 is zero address")
}
if pool.Token1 == (common.Address{}) {
return errors.New("token1 is zero address")
}
if pool.Token0 == pool.Token1 {
return errors.New("token0 and token1 are the same")
}
if pool.Token0Decimals == 0 || pool.Token0Decimals > 18 {
return errors.New("invalid token0 decimals")
}
if pool.Token1Decimals == 0 || pool.Token1Decimals > 18 {
return errors.New("invalid token1 decimals")
}
// Protocol-specific validation
switch pool.PoolType {
case PoolTypeConstantProduct:
if pool.Reserve0 == nil || pool.Reserve0.Sign() <= 0 {
return errors.New("invalid reserve0")
}
if pool.Reserve1 == nil || pool.Reserve1.Sign() <= 0 {
return errors.New("invalid reserve1")
}
case PoolTypeConcentrated:
if pool.SqrtPriceX96 == nil || pool.SqrtPriceX96.Sign() <= 0 {
return errors.New("invalid sqrtPriceX96")
}
if pool.Liquidity == nil || pool.Liquidity.Sign() < 0 {
return errors.New("invalid liquidity")
}
}
return nil
}
2. Swap Event Validation
func ValidateSwapEvent(event *SwapEvent) error {
// Zero address checks
if event.Token0 == (common.Address{}) {
return errors.New("token0 is zero address")
}
if event.Token1 == (common.Address{}) {
return errors.New("token1 is zero address")
}
if event.PoolAddress == (common.Address{}) {
return errors.New("pool address is zero")
}
// Amount validation (at least one must be non-zero)
hasAmount0 := (event.Amount0In != nil && event.Amount0In.Sign() > 0) ||
(event.Amount0Out != nil && event.Amount0Out.Sign() > 0)
hasAmount1 := (event.Amount1In != nil && event.Amount1In.Sign() > 0) ||
(event.Amount1Out != nil && event.Amount1Out.Sign() > 0)
if !hasAmount0 {
return errors.New("both amount0In and amount0Out are zero")
}
if !hasAmount1 {
return errors.New("both amount1In and amount1Out are zero")
}
// Logical validation (can't have both in and out for same token)
if event.Amount0In != nil && event.Amount0In.Sign() > 0 &&
event.Amount0Out != nil && event.Amount0Out.Sign() > 0 {
return errors.New("amount0In and amount0Out both positive")
}
return nil
}
Testing Requirements
See 03_TESTING_REQUIREMENTS.md for comprehensive testing strategy.
Each parser MUST have:
- Unit tests for all event types (100% coverage)
- Integration tests with real Arbiscan data
- Edge case tests (zero amounts, max values, etc.)
- Decimal precision tests
- Gas estimation tests
CRITICAL: All protocols must be supported. All decimals must be handled correctly. All validation must pass. No exceptions.