1390 lines
36 KiB
Go
1390 lines
36 KiB
Go
// uint256: Fixed size 256-bit math library
|
||
// Copyright 2018-2020 uint256 Authors
|
||
// SPDX-License-Identifier: BSD-3-Clause
|
||
|
||
// Package math provides integer math utilities.
|
||
|
||
package uint256
|
||
|
||
import (
|
||
"encoding/binary"
|
||
"math"
|
||
"math/big"
|
||
"math/bits"
|
||
)
|
||
|
||
// Int is represented as an array of 4 uint64, in little-endian order,
|
||
// so that Int[3] is the most significant, and Int[0] is the least significant
|
||
type Int [4]uint64
|
||
|
||
// NewInt returns a new initialized Int.
|
||
func NewInt(val uint64) *Int {
|
||
z := &Int{}
|
||
z.SetUint64(val)
|
||
return z
|
||
}
|
||
|
||
// SetBytes interprets buf as the bytes of a big-endian unsigned
|
||
// integer, sets z to that value, and returns z.
|
||
// If buf is larger than 32 bytes, the last 32 bytes is used. This operation
|
||
// is semantically equivalent to `FromBig(new(big.Int).SetBytes(buf))`
|
||
func (z *Int) SetBytes(buf []byte) *Int {
|
||
switch l := len(buf); l {
|
||
case 0:
|
||
z.Clear()
|
||
case 1:
|
||
z.SetBytes1(buf)
|
||
case 2:
|
||
z.SetBytes2(buf)
|
||
case 3:
|
||
z.SetBytes3(buf)
|
||
case 4:
|
||
z.SetBytes4(buf)
|
||
case 5:
|
||
z.SetBytes5(buf)
|
||
case 6:
|
||
z.SetBytes6(buf)
|
||
case 7:
|
||
z.SetBytes7(buf)
|
||
case 8:
|
||
z.SetBytes8(buf)
|
||
case 9:
|
||
z.SetBytes9(buf)
|
||
case 10:
|
||
z.SetBytes10(buf)
|
||
case 11:
|
||
z.SetBytes11(buf)
|
||
case 12:
|
||
z.SetBytes12(buf)
|
||
case 13:
|
||
z.SetBytes13(buf)
|
||
case 14:
|
||
z.SetBytes14(buf)
|
||
case 15:
|
||
z.SetBytes15(buf)
|
||
case 16:
|
||
z.SetBytes16(buf)
|
||
case 17:
|
||
z.SetBytes17(buf)
|
||
case 18:
|
||
z.SetBytes18(buf)
|
||
case 19:
|
||
z.SetBytes19(buf)
|
||
case 20:
|
||
z.SetBytes20(buf)
|
||
case 21:
|
||
z.SetBytes21(buf)
|
||
case 22:
|
||
z.SetBytes22(buf)
|
||
case 23:
|
||
z.SetBytes23(buf)
|
||
case 24:
|
||
z.SetBytes24(buf)
|
||
case 25:
|
||
z.SetBytes25(buf)
|
||
case 26:
|
||
z.SetBytes26(buf)
|
||
case 27:
|
||
z.SetBytes27(buf)
|
||
case 28:
|
||
z.SetBytes28(buf)
|
||
case 29:
|
||
z.SetBytes29(buf)
|
||
case 30:
|
||
z.SetBytes30(buf)
|
||
case 31:
|
||
z.SetBytes31(buf)
|
||
default:
|
||
z.SetBytes32(buf[l-32:])
|
||
}
|
||
return z
|
||
}
|
||
|
||
// Bytes32 returns the value of z as a 32-byte big-endian array.
|
||
func (z *Int) Bytes32() [32]byte {
|
||
// The PutUint64()s are inlined and we get 4x (load, bswap, store) instructions.
|
||
var b [32]byte
|
||
binary.BigEndian.PutUint64(b[0:8], z[3])
|
||
binary.BigEndian.PutUint64(b[8:16], z[2])
|
||
binary.BigEndian.PutUint64(b[16:24], z[1])
|
||
binary.BigEndian.PutUint64(b[24:32], z[0])
|
||
return b
|
||
}
|
||
|
||
// Bytes20 returns the value of z as a 20-byte big-endian array.
|
||
func (z *Int) Bytes20() [20]byte {
|
||
var b [20]byte
|
||
// The PutUint*()s are inlined and we get 3x (load, bswap, store) instructions.
|
||
binary.BigEndian.PutUint32(b[0:4], uint32(z[2]))
|
||
binary.BigEndian.PutUint64(b[4:12], z[1])
|
||
binary.BigEndian.PutUint64(b[12:20], z[0])
|
||
return b
|
||
}
|
||
|
||
// Bytes returns the value of z as a big-endian byte slice.
|
||
func (z *Int) Bytes() []byte {
|
||
b := z.Bytes32()
|
||
return b[32-z.ByteLen():]
|
||
}
|
||
|
||
// WriteToSlice writes the content of z into the given byteslice.
|
||
// If dest is larger than 32 bytes, z will fill the first parts, and leave
|
||
// the end untouched.
|
||
// OBS! If dest is smaller than 32 bytes, only the end parts of z will be used
|
||
// for filling the array, making it useful for filling an Address object
|
||
func (z *Int) WriteToSlice(dest []byte) {
|
||
// ensure 32 bytes
|
||
// A too large buffer. Fill last 32 bytes
|
||
end := len(dest) - 1
|
||
if end > 31 {
|
||
end = 31
|
||
}
|
||
for i := 0; i <= end; i++ {
|
||
dest[end-i] = byte(z[i/8] >> uint64(8*(i%8)))
|
||
}
|
||
}
|
||
|
||
// PutUint256 writes all 32 bytes of z to the destination slice, including zero-bytes.
|
||
// If dest is larger than 32 bytes, z will fill the first parts, and leave
|
||
// the end untouched.
|
||
// Note: The dest slice must be at least 32 bytes large, otherwise this
|
||
// method will panic. The method WriteToSlice, which is slower, should be used
|
||
// if the destination slice is smaller or of unknown size.
|
||
func (z *Int) PutUint256(dest []byte) {
|
||
_ = dest[31]
|
||
binary.BigEndian.PutUint64(dest[0:8], z[3])
|
||
binary.BigEndian.PutUint64(dest[8:16], z[2])
|
||
binary.BigEndian.PutUint64(dest[16:24], z[1])
|
||
binary.BigEndian.PutUint64(dest[24:32], z[0])
|
||
}
|
||
|
||
// WriteToArray32 writes all 32 bytes of z to the destination array, including zero-bytes
|
||
func (z *Int) WriteToArray32(dest *[32]byte) {
|
||
// The PutUint64()s are inlined and we get 4x (load, bswap, store) instructions.
|
||
binary.BigEndian.PutUint64(dest[0:8], z[3])
|
||
binary.BigEndian.PutUint64(dest[8:16], z[2])
|
||
binary.BigEndian.PutUint64(dest[16:24], z[1])
|
||
binary.BigEndian.PutUint64(dest[24:32], z[0])
|
||
}
|
||
|
||
// WriteToArray20 writes the last 20 bytes of z to the destination array, including zero-bytes
|
||
func (z *Int) WriteToArray20(dest *[20]byte) {
|
||
// The PutUint*()s are inlined and we get 3x (load, bswap, store) instructions.
|
||
binary.BigEndian.PutUint32(dest[0:4], uint32(z[2]))
|
||
binary.BigEndian.PutUint64(dest[4:12], z[1])
|
||
binary.BigEndian.PutUint64(dest[12:20], z[0])
|
||
}
|
||
|
||
// Uint64 returns the lower 64-bits of z
|
||
func (z *Int) Uint64() uint64 {
|
||
return z[0]
|
||
}
|
||
|
||
// Uint64WithOverflow returns the lower 64-bits of z and bool whether overflow occurred
|
||
func (z *Int) Uint64WithOverflow() (uint64, bool) {
|
||
return z[0], (z[1] | z[2] | z[3]) != 0
|
||
}
|
||
|
||
// Clone creates a new Int identical to z
|
||
func (z *Int) Clone() *Int {
|
||
return &Int{z[0], z[1], z[2], z[3]}
|
||
}
|
||
|
||
// Add sets z to the sum x+y
|
||
func (z *Int) Add(x, y *Int) *Int {
|
||
var carry uint64
|
||
z[0], carry = bits.Add64(x[0], y[0], 0)
|
||
z[1], carry = bits.Add64(x[1], y[1], carry)
|
||
z[2], carry = bits.Add64(x[2], y[2], carry)
|
||
z[3], _ = bits.Add64(x[3], y[3], carry)
|
||
return z
|
||
}
|
||
|
||
// AddOverflow sets z to the sum x+y, and returns z and whether overflow occurred
|
||
func (z *Int) AddOverflow(x, y *Int) (*Int, bool) {
|
||
var carry uint64
|
||
z[0], carry = bits.Add64(x[0], y[0], 0)
|
||
z[1], carry = bits.Add64(x[1], y[1], carry)
|
||
z[2], carry = bits.Add64(x[2], y[2], carry)
|
||
z[3], carry = bits.Add64(x[3], y[3], carry)
|
||
return z, carry != 0
|
||
}
|
||
|
||
// AddMod sets z to the sum ( x+y ) mod m, and returns z.
|
||
// If m == 0, z is set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) AddMod(x, y, m *Int) *Int {
|
||
|
||
// Fast path for m >= 2^192, with x and y at most slightly bigger than m.
|
||
// This is always the case when x and y are already reduced modulo such m.
|
||
|
||
if (m[3] != 0) && (x[3] <= m[3]) && (y[3] <= m[3]) {
|
||
var (
|
||
gteC1 uint64
|
||
gteC2 uint64
|
||
tmpX Int
|
||
tmpY Int
|
||
res Int
|
||
)
|
||
|
||
// reduce x/y modulo m if they are gte m
|
||
tmpX[0], gteC1 = bits.Sub64(x[0], m[0], gteC1)
|
||
tmpX[1], gteC1 = bits.Sub64(x[1], m[1], gteC1)
|
||
tmpX[2], gteC1 = bits.Sub64(x[2], m[2], gteC1)
|
||
tmpX[3], gteC1 = bits.Sub64(x[3], m[3], gteC1)
|
||
|
||
tmpY[0], gteC2 = bits.Sub64(y[0], m[0], gteC2)
|
||
tmpY[1], gteC2 = bits.Sub64(y[1], m[1], gteC2)
|
||
tmpY[2], gteC2 = bits.Sub64(y[2], m[2], gteC2)
|
||
tmpY[3], gteC2 = bits.Sub64(y[3], m[3], gteC2)
|
||
|
||
if gteC1 == 0 {
|
||
x = &tmpX
|
||
}
|
||
if gteC2 == 0 {
|
||
y = &tmpY
|
||
}
|
||
var (
|
||
c1 uint64
|
||
c2 uint64
|
||
tmp Int
|
||
)
|
||
|
||
res[0], c1 = bits.Add64(x[0], y[0], c1)
|
||
res[1], c1 = bits.Add64(x[1], y[1], c1)
|
||
res[2], c1 = bits.Add64(x[2], y[2], c1)
|
||
res[3], c1 = bits.Add64(x[3], y[3], c1)
|
||
|
||
tmp[0], c2 = bits.Sub64(res[0], m[0], c2)
|
||
tmp[1], c2 = bits.Sub64(res[1], m[1], c2)
|
||
tmp[2], c2 = bits.Sub64(res[2], m[2], c2)
|
||
tmp[3], c2 = bits.Sub64(res[3], m[3], c2)
|
||
|
||
// final sub was unnecessary
|
||
if c1 == 0 && c2 != 0 {
|
||
return z.Set(&res)
|
||
}
|
||
|
||
return z.Set(&tmp)
|
||
}
|
||
|
||
if m.IsZero() {
|
||
return z.Clear()
|
||
}
|
||
if z == m { // z is an alias for m and will be overwritten by AddOverflow before m is read
|
||
m = m.Clone()
|
||
}
|
||
if _, overflow := z.AddOverflow(x, y); overflow {
|
||
sum := [5]uint64{z[0], z[1], z[2], z[3], 1}
|
||
var quot [5]uint64
|
||
var rem Int
|
||
udivrem(quot[:], sum[:], m, &rem)
|
||
return z.Set(&rem)
|
||
}
|
||
return z.Mod(z, m)
|
||
}
|
||
|
||
// AddUint64 sets z to x + y, where y is a uint64, and returns z
|
||
func (z *Int) AddUint64(x *Int, y uint64) *Int {
|
||
var carry uint64
|
||
|
||
z[0], carry = bits.Add64(x[0], y, 0)
|
||
z[1], carry = bits.Add64(x[1], 0, carry)
|
||
z[2], carry = bits.Add64(x[2], 0, carry)
|
||
z[3], _ = bits.Add64(x[3], 0, carry)
|
||
return z
|
||
}
|
||
|
||
// PaddedBytes encodes a Int as a 0-padded byte slice. The length
|
||
// of the slice is at least n bytes.
|
||
// Example, z =1, n = 20 => [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
|
||
func (z *Int) PaddedBytes(n int) []byte {
|
||
b := make([]byte, n)
|
||
|
||
for i := 0; i < 32 && i < n; i++ {
|
||
b[n-1-i] = byte(z[i/8] >> uint64(8*(i%8)))
|
||
}
|
||
return b
|
||
}
|
||
|
||
// SubUint64 set z to the difference x - y, where y is a uint64, and returns z
|
||
func (z *Int) SubUint64(x *Int, y uint64) *Int {
|
||
var carry uint64
|
||
z[0], carry = bits.Sub64(x[0], y, carry)
|
||
z[1], carry = bits.Sub64(x[1], 0, carry)
|
||
z[2], carry = bits.Sub64(x[2], 0, carry)
|
||
z[3], _ = bits.Sub64(x[3], 0, carry)
|
||
return z
|
||
}
|
||
|
||
// SubOverflow sets z to the difference x-y and returns z and true if the operation underflowed
|
||
func (z *Int) SubOverflow(x, y *Int) (*Int, bool) {
|
||
var carry uint64
|
||
z[0], carry = bits.Sub64(x[0], y[0], 0)
|
||
z[1], carry = bits.Sub64(x[1], y[1], carry)
|
||
z[2], carry = bits.Sub64(x[2], y[2], carry)
|
||
z[3], carry = bits.Sub64(x[3], y[3], carry)
|
||
return z, carry != 0
|
||
}
|
||
|
||
// Sub sets z to the difference x-y
|
||
func (z *Int) Sub(x, y *Int) *Int {
|
||
var carry uint64
|
||
z[0], carry = bits.Sub64(x[0], y[0], 0)
|
||
z[1], carry = bits.Sub64(x[1], y[1], carry)
|
||
z[2], carry = bits.Sub64(x[2], y[2], carry)
|
||
z[3], _ = bits.Sub64(x[3], y[3], carry)
|
||
return z
|
||
}
|
||
|
||
// umulStep computes (hi * 2^64 + lo) = z + (x * y) + carry.
|
||
func umulStep(z, x, y, carry uint64) (hi, lo uint64) {
|
||
hi, lo = bits.Mul64(x, y)
|
||
lo, carry = bits.Add64(lo, carry, 0)
|
||
hi, _ = bits.Add64(hi, 0, carry)
|
||
lo, carry = bits.Add64(lo, z, 0)
|
||
hi, _ = bits.Add64(hi, 0, carry)
|
||
return hi, lo
|
||
}
|
||
|
||
// umulHop computes (hi * 2^64 + lo) = z + (x * y)
|
||
func umulHop(z, x, y uint64) (hi, lo uint64) {
|
||
hi, lo = bits.Mul64(x, y)
|
||
lo, carry := bits.Add64(lo, z, 0)
|
||
hi, _ = bits.Add64(hi, 0, carry)
|
||
return hi, lo
|
||
}
|
||
|
||
// umul computes full 256 x 256 -> 512 multiplication.
|
||
func umul(x, y *Int, res *[8]uint64) {
|
||
var (
|
||
carry, carry4, carry5, carry6 uint64
|
||
res1, res2, res3, res4, res5 uint64
|
||
)
|
||
|
||
carry, res[0] = bits.Mul64(x[0], y[0])
|
||
carry, res1 = umulHop(carry, x[1], y[0])
|
||
carry, res2 = umulHop(carry, x[2], y[0])
|
||
carry4, res3 = umulHop(carry, x[3], y[0])
|
||
|
||
carry, res[1] = umulHop(res1, x[0], y[1])
|
||
carry, res2 = umulStep(res2, x[1], y[1], carry)
|
||
carry, res3 = umulStep(res3, x[2], y[1], carry)
|
||
carry5, res4 = umulStep(carry4, x[3], y[1], carry)
|
||
|
||
carry, res[2] = umulHop(res2, x[0], y[2])
|
||
carry, res3 = umulStep(res3, x[1], y[2], carry)
|
||
carry, res4 = umulStep(res4, x[2], y[2], carry)
|
||
carry6, res5 = umulStep(carry5, x[3], y[2], carry)
|
||
|
||
carry, res[3] = umulHop(res3, x[0], y[3])
|
||
carry, res[4] = umulStep(res4, x[1], y[3], carry)
|
||
carry, res[5] = umulStep(res5, x[2], y[3], carry)
|
||
res[7], res[6] = umulStep(carry6, x[3], y[3], carry)
|
||
}
|
||
|
||
// Mul sets z to the product x*y
|
||
func (z *Int) Mul(x, y *Int) *Int {
|
||
var (
|
||
carry0, carry1, carry2 uint64
|
||
res1, res2 uint64
|
||
x0, x1, x2, x3 = x[0], x[1], x[2], x[3]
|
||
y0, y1, y2, y3 = y[0], y[1], y[2], y[3]
|
||
)
|
||
|
||
carry0, z[0] = bits.Mul64(x0, y0)
|
||
carry0, res1 = umulHop(carry0, x1, y0)
|
||
carry0, res2 = umulHop(carry0, x2, y0)
|
||
|
||
carry1, z[1] = umulHop(res1, x0, y1)
|
||
carry1, res2 = umulStep(res2, x1, y1, carry1)
|
||
|
||
carry2, z[2] = umulHop(res2, x0, y2)
|
||
|
||
z[3] = x3*y0 + x2*y1 + x0*y3 + x1*y2 + carry0 + carry1 + carry2
|
||
return z
|
||
}
|
||
|
||
// MulOverflow sets z to the product x*y, and returns z and whether overflow occurred
|
||
func (z *Int) MulOverflow(x, y *Int) (*Int, bool) {
|
||
var p [8]uint64
|
||
umul(x, y, &p)
|
||
copy(z[:], p[:4])
|
||
return z, (p[4] | p[5] | p[6] | p[7]) != 0
|
||
}
|
||
|
||
func (z *Int) squared() {
|
||
var (
|
||
carry0, carry1, carry2 uint64
|
||
res0, res1, res2, res3 uint64
|
||
)
|
||
|
||
carry0, res0 = bits.Mul64(z[0], z[0])
|
||
carry0, res1 = umulHop(carry0, z[0], z[1])
|
||
carry0, res2 = umulHop(carry0, z[0], z[2])
|
||
|
||
carry1, res1 = umulHop(res1, z[0], z[1])
|
||
carry1, res2 = umulStep(res2, z[1], z[1], carry1)
|
||
|
||
carry2, res2 = umulHop(res2, z[0], z[2])
|
||
|
||
res3 = 2*(z[0]*z[3]+z[1]*z[2]) + carry0 + carry1 + carry2
|
||
|
||
z[0], z[1], z[2], z[3] = res0, res1, res2, res3
|
||
}
|
||
|
||
// isBitSet returns true if bit n-th is set, where n = 0 is LSB.
|
||
// The n must be <= 255.
|
||
func (z *Int) isBitSet(n uint) bool {
|
||
return (z[n/64] & (1 << (n % 64))) != 0
|
||
}
|
||
|
||
// addTo computes x += y.
|
||
// Requires len(x) >= len(y) > 0.
|
||
func addTo(x, y []uint64) uint64 {
|
||
var carry uint64
|
||
_ = x[len(y)-1] // bounds check hint to compiler; see golang.org/issue/14808
|
||
for i := 0; i < len(y); i++ {
|
||
x[i], carry = bits.Add64(x[i], y[i], carry)
|
||
}
|
||
return carry
|
||
}
|
||
|
||
// subMulTo computes x -= y * multiplier.
|
||
// Requires len(x) >= len(y) > 0.
|
||
func subMulTo(x, y []uint64, multiplier uint64) uint64 {
|
||
var borrow uint64
|
||
_ = x[len(y)-1] // bounds check hint to compiler; see golang.org/issue/14808
|
||
for i := 0; i < len(y); i++ {
|
||
s, carry1 := bits.Sub64(x[i], borrow, 0)
|
||
ph, pl := bits.Mul64(y[i], multiplier)
|
||
t, carry2 := bits.Sub64(s, pl, 0)
|
||
x[i] = t
|
||
borrow = ph + carry1 + carry2
|
||
}
|
||
return borrow
|
||
}
|
||
|
||
// udivremBy1 divides u by single normalized word d and produces both quotient and remainder.
|
||
// The quotient is stored in provided quot.
|
||
func udivremBy1(quot, u []uint64, d uint64) (rem uint64) {
|
||
reciprocal := reciprocal2by1(d)
|
||
rem = u[len(u)-1] // Set the top word as remainder.
|
||
for j := len(u) - 2; j >= 0; j-- {
|
||
quot[j], rem = udivrem2by1(rem, u[j], d, reciprocal)
|
||
}
|
||
return rem
|
||
}
|
||
|
||
// udivremKnuth implements the division of u by normalized multiple word d from the Knuth's division algorithm.
|
||
// The quotient is stored in provided quot - len(u)-len(d) words.
|
||
// Updates u to contain the remainder - len(d) words.
|
||
func udivremKnuth(quot, u, d []uint64) {
|
||
dh := d[len(d)-1]
|
||
dl := d[len(d)-2]
|
||
reciprocal := reciprocal2by1(dh)
|
||
|
||
for j := len(u) - len(d) - 1; j >= 0; j-- {
|
||
u2 := u[j+len(d)]
|
||
u1 := u[j+len(d)-1]
|
||
u0 := u[j+len(d)-2]
|
||
|
||
var qhat, rhat uint64
|
||
if u2 >= dh { // Division overflows.
|
||
qhat = ^uint64(0)
|
||
// TODO: Add "qhat one to big" adjustment (not needed for correctness, but helps avoiding "add back" case).
|
||
} else {
|
||
qhat, rhat = udivrem2by1(u2, u1, dh, reciprocal)
|
||
ph, pl := bits.Mul64(qhat, dl)
|
||
if ph > rhat || (ph == rhat && pl > u0) {
|
||
qhat--
|
||
// TODO: Add "qhat one to big" adjustment (not needed for correctness, but helps avoiding "add back" case).
|
||
}
|
||
}
|
||
|
||
// Multiply and subtract.
|
||
borrow := subMulTo(u[j:], d, qhat)
|
||
u[j+len(d)] = u2 - borrow
|
||
if u2 < borrow { // Too much subtracted, add back.
|
||
qhat--
|
||
u[j+len(d)] += addTo(u[j:], d)
|
||
}
|
||
|
||
quot[j] = qhat // Store quotient digit.
|
||
}
|
||
}
|
||
|
||
// udivrem divides u by d and produces both quotient and remainder.
|
||
// The quotient is stored in provided quot - len(u)-len(d)+1 words.
|
||
// It loosely follows the Knuth's division algorithm (sometimes referenced as "schoolbook" division) using 64-bit words.
|
||
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
|
||
func udivrem(quot, u []uint64, d, rem *Int) {
|
||
var dLen int
|
||
for i := len(d) - 1; i >= 0; i-- {
|
||
if d[i] != 0 {
|
||
dLen = i + 1
|
||
break
|
||
}
|
||
}
|
||
|
||
shift := uint(bits.LeadingZeros64(d[dLen-1]))
|
||
|
||
var dnStorage Int
|
||
dn := dnStorage[:dLen]
|
||
for i := dLen - 1; i > 0; i-- {
|
||
dn[i] = (d[i] << shift) | (d[i-1] >> (64 - shift))
|
||
}
|
||
dn[0] = d[0] << shift
|
||
|
||
var uLen int
|
||
for i := len(u) - 1; i >= 0; i-- {
|
||
if u[i] != 0 {
|
||
uLen = i + 1
|
||
break
|
||
}
|
||
}
|
||
|
||
if uLen < dLen {
|
||
if rem != nil {
|
||
copy(rem[:], u)
|
||
}
|
||
return
|
||
}
|
||
|
||
var unStorage [9]uint64
|
||
un := unStorage[:uLen+1]
|
||
un[uLen] = u[uLen-1] >> (64 - shift)
|
||
for i := uLen - 1; i > 0; i-- {
|
||
un[i] = (u[i] << shift) | (u[i-1] >> (64 - shift))
|
||
}
|
||
un[0] = u[0] << shift
|
||
|
||
// TODO: Skip the highest word of numerator if not significant.
|
||
|
||
if dLen == 1 {
|
||
r := udivremBy1(quot, un, dn[0])
|
||
if rem != nil {
|
||
rem.SetUint64(r >> shift)
|
||
}
|
||
return
|
||
}
|
||
|
||
udivremKnuth(quot, un, dn)
|
||
|
||
if rem != nil {
|
||
for i := 0; i < dLen-1; i++ {
|
||
rem[i] = (un[i] >> shift) | (un[i+1] << (64 - shift))
|
||
}
|
||
rem[dLen-1] = un[dLen-1] >> shift
|
||
}
|
||
}
|
||
|
||
// Div sets z to the quotient x/y for returns z.
|
||
// If y == 0, z is set to 0
|
||
func (z *Int) Div(x, y *Int) *Int {
|
||
if y.IsZero() || y.Gt(x) {
|
||
return z.Clear()
|
||
}
|
||
if x.Eq(y) {
|
||
return z.SetOne()
|
||
}
|
||
// Shortcut some cases
|
||
if x.IsUint64() {
|
||
return z.SetUint64(x.Uint64() / y.Uint64())
|
||
}
|
||
|
||
// At this point, we know
|
||
// x/y ; x > y > 0
|
||
|
||
var quot Int
|
||
udivrem(quot[:], x[:], y, nil)
|
||
return z.Set(")
|
||
}
|
||
|
||
// Mod sets z to the modulus x%y for y != 0 and returns z.
|
||
// If y == 0, z is set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) Mod(x, y *Int) *Int {
|
||
if y.IsZero() || x.Eq(y) {
|
||
return z.Clear()
|
||
}
|
||
if x.Lt(y) {
|
||
return z.Set(x)
|
||
}
|
||
// At this point:
|
||
// x != 0
|
||
// y != 0
|
||
// x > y
|
||
|
||
// Shortcut trivial case
|
||
if x.IsUint64() {
|
||
return z.SetUint64(x.Uint64() % y.Uint64())
|
||
}
|
||
|
||
var quot, rem Int
|
||
udivrem(quot[:], x[:], y, &rem)
|
||
return z.Set(&rem)
|
||
}
|
||
|
||
// DivMod sets z to the quotient x div y and m to the modulus x mod y and returns the pair (z, m) for y != 0.
|
||
// If y == 0, both z and m are set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
|
||
if z == m {
|
||
// We return both z and m as results, if they are aliased, we have to
|
||
// un-alias them to be able to return separate results.
|
||
m = new(Int).Set(m)
|
||
}
|
||
if y.IsZero() {
|
||
return z.Clear(), m.Clear()
|
||
}
|
||
if x.Eq(y) {
|
||
return z.SetOne(), m.Clear()
|
||
}
|
||
if x.Lt(y) {
|
||
m.Set(x)
|
||
return z.Clear(), m
|
||
}
|
||
|
||
// At this point:
|
||
// x != 0
|
||
// y != 0
|
||
// x > y
|
||
|
||
// Shortcut trivial case
|
||
if x.IsUint64() {
|
||
x0, y0 := x.Uint64(), y.Uint64()
|
||
return z.SetUint64(x0 / y0), m.SetUint64(x0 % y0)
|
||
}
|
||
|
||
var quot, rem Int
|
||
udivrem(quot[:], x[:], y, &rem)
|
||
return z.Set("), m.Set(&rem)
|
||
}
|
||
|
||
// SMod interprets x and y as two's complement signed integers,
|
||
// sets z to (sign x) * { abs(x) modulus abs(y) }
|
||
// If y == 0, z is set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) SMod(x, y *Int) *Int {
|
||
ys := y.Sign()
|
||
xs := x.Sign()
|
||
|
||
// abs x
|
||
if xs == -1 {
|
||
x = new(Int).Neg(x)
|
||
}
|
||
// abs y
|
||
if ys == -1 {
|
||
y = new(Int).Neg(y)
|
||
}
|
||
z.Mod(x, y)
|
||
if xs == -1 {
|
||
z.Neg(z)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// MulModWithReciprocal calculates the modulo-m multiplication of x and y
|
||
// and returns z, using the reciprocal of m provided as the mu parameter.
|
||
// Use uint256.Reciprocal to calculate mu from m.
|
||
// If m == 0, z is set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) MulModWithReciprocal(x, y, m *Int, mu *[5]uint64) *Int {
|
||
if x.IsZero() || y.IsZero() || m.IsZero() {
|
||
return z.Clear()
|
||
}
|
||
var p [8]uint64
|
||
umul(x, y, &p)
|
||
|
||
if m[3] != 0 {
|
||
return z.reduce4(&p, m, mu)
|
||
}
|
||
|
||
var (
|
||
pl Int
|
||
ph Int
|
||
)
|
||
pl[0], pl[1], pl[2], pl[3] = p[0], p[1], p[2], p[3]
|
||
ph[0], ph[1], ph[2], ph[3] = p[4], p[5], p[6], p[7]
|
||
|
||
// If the multiplication is within 256 bits use Mod().
|
||
if ph.IsZero() {
|
||
return z.Mod(&pl, m)
|
||
}
|
||
|
||
var quot [8]uint64
|
||
var rem Int
|
||
udivrem(quot[:], p[:], m, &rem)
|
||
return z.Set(&rem)
|
||
}
|
||
|
||
// MulMod calculates the modulo-m multiplication of x and y and
|
||
// returns z.
|
||
// If m == 0, z is set to 0 (OBS: differs from the big.Int)
|
||
func (z *Int) MulMod(x, y, m *Int) *Int {
|
||
if x.IsZero() || y.IsZero() || m.IsZero() {
|
||
return z.Clear()
|
||
}
|
||
var p [8]uint64
|
||
umul(x, y, &p)
|
||
|
||
if m[3] != 0 {
|
||
mu := Reciprocal(m)
|
||
return z.reduce4(&p, m, &mu)
|
||
}
|
||
|
||
var (
|
||
pl Int
|
||
ph Int
|
||
)
|
||
pl[0], pl[1], pl[2], pl[3] = p[0], p[1], p[2], p[3]
|
||
ph[0], ph[1], ph[2], ph[3] = p[4], p[5], p[6], p[7]
|
||
|
||
// If the multiplication is within 256 bits use Mod().
|
||
if ph.IsZero() {
|
||
return z.Mod(&pl, m)
|
||
}
|
||
|
||
var quot [8]uint64
|
||
var rem Int
|
||
udivrem(quot[:], p[:], m, &rem)
|
||
return z.Set(&rem)
|
||
}
|
||
|
||
// MulDivOverflow calculates (x*y)/d with full precision, returns z and whether overflow occurred in multiply process (result does not fit to 256-bit).
|
||
// computes 512-bit multiplication and 512 by 256 division.
|
||
func (z *Int) MulDivOverflow(x, y, d *Int) (*Int, bool) {
|
||
if x.IsZero() || y.IsZero() || d.IsZero() {
|
||
return z.Clear(), false
|
||
}
|
||
var p [8]uint64
|
||
umul(x, y, &p)
|
||
|
||
var quot [8]uint64
|
||
udivrem(quot[:], p[:], d, nil)
|
||
|
||
z[0], z[1], z[2], z[3] = quot[0], quot[1], quot[2], quot[3]
|
||
|
||
return z, (quot[4] | quot[5] | quot[6] | quot[7]) != 0
|
||
}
|
||
|
||
// Abs interprets x as a two's complement signed number,
|
||
// and sets z to the absolute value
|
||
//
|
||
// Abs(0) = 0
|
||
// Abs(1) = 1
|
||
// Abs(2**255) = -2**255
|
||
// Abs(2**256-1) = -1
|
||
func (z *Int) Abs(x *Int) *Int {
|
||
if x[3] < 0x8000000000000000 {
|
||
return z.Set(x)
|
||
}
|
||
return z.Sub(new(Int), x)
|
||
}
|
||
|
||
// Neg returns -x mod 2**256.
|
||
func (z *Int) Neg(x *Int) *Int {
|
||
return z.Sub(new(Int), x)
|
||
}
|
||
|
||
// SDiv interprets n and d as two's complement signed integers,
|
||
// does a signed division on the two operands and sets z to the result.
|
||
// If d == 0, z is set to 0
|
||
func (z *Int) SDiv(n, d *Int) *Int {
|
||
if n.Sign() > 0 {
|
||
if d.Sign() > 0 {
|
||
// pos / pos
|
||
z.Div(n, d)
|
||
return z
|
||
} else {
|
||
// pos / neg
|
||
z.Div(n, new(Int).Neg(d))
|
||
return z.Neg(z)
|
||
}
|
||
}
|
||
|
||
if d.Sign() < 0 {
|
||
// neg / neg
|
||
z.Div(new(Int).Neg(n), new(Int).Neg(d))
|
||
return z
|
||
}
|
||
// neg / pos
|
||
z.Div(new(Int).Neg(n), d)
|
||
return z.Neg(z)
|
||
}
|
||
|
||
// Sign returns:
|
||
//
|
||
// -1 if z < 0
|
||
// 0 if z == 0
|
||
// +1 if z > 0
|
||
//
|
||
// Where z is interpreted as a two's complement signed number
|
||
func (z *Int) Sign() int {
|
||
if z.IsZero() {
|
||
return 0
|
||
}
|
||
if z[3] < 0x8000000000000000 {
|
||
return 1
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// BitLen returns the number of bits required to represent z
|
||
func (z *Int) BitLen() int {
|
||
switch {
|
||
case z[3] != 0:
|
||
return 192 + bits.Len64(z[3])
|
||
case z[2] != 0:
|
||
return 128 + bits.Len64(z[2])
|
||
case z[1] != 0:
|
||
return 64 + bits.Len64(z[1])
|
||
default:
|
||
return bits.Len64(z[0])
|
||
}
|
||
}
|
||
|
||
// ByteLen returns the number of bytes required to represent z
|
||
func (z *Int) ByteLen() int {
|
||
return (z.BitLen() + 7) / 8
|
||
}
|
||
|
||
func (z *Int) lsh64(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = x[2], x[1], x[0], 0
|
||
return z
|
||
}
|
||
func (z *Int) lsh128(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = x[1], x[0], 0, 0
|
||
return z
|
||
}
|
||
func (z *Int) lsh192(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = x[0], 0, 0, 0
|
||
return z
|
||
}
|
||
func (z *Int) rsh64(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = 0, x[3], x[2], x[1]
|
||
return z
|
||
}
|
||
func (z *Int) rsh128(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = 0, 0, x[3], x[2]
|
||
return z
|
||
}
|
||
func (z *Int) rsh192(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = 0, 0, 0, x[3]
|
||
return z
|
||
}
|
||
func (z *Int) srsh64(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = math.MaxUint64, x[3], x[2], x[1]
|
||
return z
|
||
}
|
||
func (z *Int) srsh128(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, x[3], x[2]
|
||
return z
|
||
}
|
||
func (z *Int) srsh192(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, math.MaxUint64, x[3]
|
||
return z
|
||
}
|
||
|
||
// Not sets z = ^x and returns z.
|
||
func (z *Int) Not(x *Int) *Int {
|
||
z[3], z[2], z[1], z[0] = ^x[3], ^x[2], ^x[1], ^x[0]
|
||
return z
|
||
}
|
||
|
||
// Gt returns true if z > x
|
||
func (z *Int) Gt(x *Int) bool {
|
||
return x.Lt(z)
|
||
}
|
||
|
||
// Slt interprets z and x as signed integers, and returns
|
||
// true if z < x
|
||
func (z *Int) Slt(x *Int) bool {
|
||
|
||
zSign := z.Sign()
|
||
xSign := x.Sign()
|
||
|
||
switch {
|
||
case zSign >= 0 && xSign < 0:
|
||
return false
|
||
case zSign < 0 && xSign >= 0:
|
||
return true
|
||
default:
|
||
return z.Lt(x)
|
||
}
|
||
}
|
||
|
||
// Sgt interprets z and x as signed integers, and returns
|
||
// true if z > x
|
||
func (z *Int) Sgt(x *Int) bool {
|
||
zSign := z.Sign()
|
||
xSign := x.Sign()
|
||
|
||
switch {
|
||
case zSign >= 0 && xSign < 0:
|
||
return true
|
||
case zSign < 0 && xSign >= 0:
|
||
return false
|
||
default:
|
||
return z.Gt(x)
|
||
}
|
||
}
|
||
|
||
// Lt returns true if z < x
|
||
func (z *Int) Lt(x *Int) bool {
|
||
// z < x <=> z - x < 0 i.e. when subtraction overflows.
|
||
_, carry := bits.Sub64(z[0], x[0], 0)
|
||
_, carry = bits.Sub64(z[1], x[1], carry)
|
||
_, carry = bits.Sub64(z[2], x[2], carry)
|
||
_, carry = bits.Sub64(z[3], x[3], carry)
|
||
return carry != 0
|
||
}
|
||
|
||
// SetUint64 sets z to the value x
|
||
func (z *Int) SetUint64(x uint64) *Int {
|
||
z[3], z[2], z[1], z[0] = 0, 0, 0, x
|
||
return z
|
||
}
|
||
|
||
// Eq returns true if z == x
|
||
func (z *Int) Eq(x *Int) bool {
|
||
return (z[0] == x[0]) && (z[1] == x[1]) && (z[2] == x[2]) && (z[3] == x[3])
|
||
}
|
||
|
||
// Cmp compares z and x and returns:
|
||
//
|
||
// -1 if z < x
|
||
// 0 if z == x
|
||
// +1 if z > x
|
||
func (z *Int) Cmp(x *Int) (r int) {
|
||
// z < x <=> z - x < 0 i.e. when subtraction overflows.
|
||
d0, carry := bits.Sub64(z[0], x[0], 0)
|
||
d1, carry := bits.Sub64(z[1], x[1], carry)
|
||
d2, carry := bits.Sub64(z[2], x[2], carry)
|
||
d3, carry := bits.Sub64(z[3], x[3], carry)
|
||
if carry == 1 {
|
||
return -1
|
||
}
|
||
if d0|d1|d2|d3 == 0 {
|
||
return 0
|
||
}
|
||
return 1
|
||
}
|
||
|
||
// CmpUint64 compares z and x and returns:
|
||
//
|
||
// -1 if z < x
|
||
// 0 if z == x
|
||
// +1 if z > x
|
||
func (z *Int) CmpUint64(x uint64) int {
|
||
if z[0] > x || (z[1]|z[2]|z[3]) != 0 {
|
||
return 1
|
||
}
|
||
if z[0] == x {
|
||
return 0
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// CmpBig compares z and x and returns:
|
||
//
|
||
// -1 if z < x
|
||
// 0 if z == x
|
||
// +1 if z > x
|
||
func (z *Int) CmpBig(x *big.Int) (r int) {
|
||
// If x is negative, it's surely smaller (z > x)
|
||
if x.Sign() == -1 {
|
||
return 1
|
||
}
|
||
y := new(Int)
|
||
if y.SetFromBig(x) { // overflow
|
||
// z < x
|
||
return -1
|
||
}
|
||
return z.Cmp(y)
|
||
}
|
||
|
||
// LtUint64 returns true if z is smaller than n
|
||
func (z *Int) LtUint64(n uint64) bool {
|
||
return z[0] < n && (z[1]|z[2]|z[3]) == 0
|
||
}
|
||
|
||
// GtUint64 returns true if z is larger than n
|
||
func (z *Int) GtUint64(n uint64) bool {
|
||
return z[0] > n || (z[1]|z[2]|z[3]) != 0
|
||
}
|
||
|
||
// IsUint64 reports whether z can be represented as a uint64.
|
||
func (z *Int) IsUint64() bool {
|
||
return (z[1] | z[2] | z[3]) == 0
|
||
}
|
||
|
||
// IsZero returns true if z == 0
|
||
func (z *Int) IsZero() bool {
|
||
return (z[0] | z[1] | z[2] | z[3]) == 0
|
||
}
|
||
|
||
// Clear sets z to 0
|
||
func (z *Int) Clear() *Int {
|
||
z[3], z[2], z[1], z[0] = 0, 0, 0, 0
|
||
return z
|
||
}
|
||
|
||
// SetAllOne sets all the bits of z to 1
|
||
func (z *Int) SetAllOne() *Int {
|
||
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, math.MaxUint64, math.MaxUint64
|
||
return z
|
||
}
|
||
|
||
// SetOne sets z to 1
|
||
func (z *Int) SetOne() *Int {
|
||
z[3], z[2], z[1], z[0] = 0, 0, 0, 1
|
||
return z
|
||
}
|
||
|
||
// Lsh sets z = x << n and returns z.
|
||
func (z *Int) Lsh(x *Int, n uint) *Int {
|
||
switch {
|
||
case n == 0:
|
||
return z.Set(x)
|
||
case n >= 192:
|
||
z.lsh192(x)
|
||
n -= 192
|
||
z[3] <<= n
|
||
return z
|
||
case n >= 128:
|
||
z.lsh128(x)
|
||
n -= 128
|
||
z[3] = (z[3] << n) | (z[2] >> (64 - n))
|
||
z[2] <<= n
|
||
return z
|
||
case n >= 64:
|
||
z.lsh64(x)
|
||
n -= 64
|
||
z[3] = (z[3] << n) | (z[2] >> (64 - n))
|
||
z[2] = (z[2] << n) | (z[1] >> (64 - n))
|
||
z[1] <<= n
|
||
return z
|
||
default:
|
||
z.Set(x)
|
||
z[3] = (z[3] << n) | (z[2] >> (64 - n))
|
||
z[2] = (z[2] << n) | (z[1] >> (64 - n))
|
||
z[1] = (z[1] << n) | (z[0] >> (64 - n))
|
||
z[0] <<= n
|
||
return z
|
||
}
|
||
}
|
||
|
||
// Rsh sets z = x >> n and returns z.
|
||
func (z *Int) Rsh(x *Int, n uint) *Int {
|
||
switch {
|
||
case n == 0:
|
||
return z.Set(x)
|
||
case n >= 192:
|
||
z.rsh192(x)
|
||
n -= 192
|
||
z[0] >>= n
|
||
return z
|
||
case n >= 128:
|
||
z.rsh128(x)
|
||
n -= 128
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] >>= n
|
||
return z
|
||
case n >= 64:
|
||
z.rsh64(x)
|
||
n -= 64
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] = (z[1] >> n) | (z[2] << (64 - n))
|
||
z[2] >>= n
|
||
return z
|
||
default:
|
||
z.Set(x)
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] = (z[1] >> n) | (z[2] << (64 - n))
|
||
z[2] = (z[2] >> n) | (z[3] << (64 - n))
|
||
z[3] >>= n
|
||
return z
|
||
}
|
||
}
|
||
|
||
// SRsh (Signed/Arithmetic right shift)
|
||
// considers z to be a signed integer, during right-shift
|
||
// and sets z = x >> n and returns z.
|
||
func (z *Int) SRsh(x *Int, n uint) *Int {
|
||
// If the MSB is 0, SRsh is same as Rsh.
|
||
if !x.isBitSet(255) {
|
||
return z.Rsh(x, n)
|
||
}
|
||
var a uint64 = math.MaxUint64 << (64 - n%64)
|
||
|
||
switch {
|
||
case n == 0:
|
||
return z.Set(x)
|
||
case n >= 256:
|
||
return z.SetAllOne()
|
||
case n >= 192:
|
||
z.srsh192(x)
|
||
n -= 192
|
||
z[0] = (z[0] >> n) | a
|
||
return z
|
||
case n >= 128:
|
||
z.srsh128(x)
|
||
n -= 128
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] = (z[1] >> n) | a
|
||
return z
|
||
case n >= 64:
|
||
z.srsh64(x)
|
||
n -= 64
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] = (z[1] >> n) | (z[2] << (64 - n))
|
||
z[2] = (z[2] >> n) | a
|
||
return z
|
||
default:
|
||
z.Set(x)
|
||
z[0] = (z[0] >> n) | (z[1] << (64 - n))
|
||
z[1] = (z[1] >> n) | (z[2] << (64 - n))
|
||
z[2] = (z[2] >> n) | (z[3] << (64 - n))
|
||
z[3] = (z[3] >> n) | a
|
||
return z
|
||
}
|
||
}
|
||
|
||
// Set sets z to x and returns z.
|
||
func (z *Int) Set(x *Int) *Int {
|
||
z[0], z[1], z[2], z[3] = x[0], x[1], x[2], x[3]
|
||
return z
|
||
}
|
||
|
||
// Or sets z = x | y and returns z.
|
||
func (z *Int) Or(x, y *Int) *Int {
|
||
z[0] = x[0] | y[0]
|
||
z[1] = x[1] | y[1]
|
||
z[2] = x[2] | y[2]
|
||
z[3] = x[3] | y[3]
|
||
return z
|
||
}
|
||
|
||
// And sets z = x & y and returns z.
|
||
func (z *Int) And(x, y *Int) *Int {
|
||
z[0] = x[0] & y[0]
|
||
z[1] = x[1] & y[1]
|
||
z[2] = x[2] & y[2]
|
||
z[3] = x[3] & y[3]
|
||
return z
|
||
}
|
||
|
||
// Xor sets z = x ^ y and returns z.
|
||
func (z *Int) Xor(x, y *Int) *Int {
|
||
z[0] = x[0] ^ y[0]
|
||
z[1] = x[1] ^ y[1]
|
||
z[2] = x[2] ^ y[2]
|
||
z[3] = x[3] ^ y[3]
|
||
return z
|
||
}
|
||
|
||
// Byte sets z to the value of the byte at position n,
|
||
// with z considered as a big-endian 32-byte integer.
|
||
// if n >= 32, z is set to 0
|
||
// Example: z=5, n=31 => 5
|
||
func (z *Int) Byte(n *Int) *Int {
|
||
index, overflow := n.Uint64WithOverflow()
|
||
if overflow || index >= 32 {
|
||
return z.Clear()
|
||
}
|
||
// in z, z[0] is the least significant
|
||
number := z[4-1-index/8]
|
||
offset := (index & 0x7) << 3 // 8 * (index % 8)
|
||
z[0] = (number >> (56 - offset)) & 0xff
|
||
z[3], z[2], z[1] = 0, 0, 0
|
||
return z
|
||
}
|
||
|
||
// Exp sets z = base**exponent mod 2**256, and returns z.
|
||
func (z *Int) Exp(base, exponent *Int) *Int {
|
||
var (
|
||
res = Int{1, 0, 0, 0}
|
||
multiplier = *base
|
||
expBitLen = exponent.BitLen()
|
||
curBit = 0
|
||
word = exponent[0]
|
||
even = base[0]&1 == 0
|
||
)
|
||
if even && expBitLen > 8 {
|
||
return z.Clear()
|
||
}
|
||
|
||
for ; curBit < expBitLen && curBit < 64; curBit++ {
|
||
if word&1 == 1 {
|
||
res.Mul(&res, &multiplier)
|
||
}
|
||
multiplier.squared()
|
||
word >>= 1
|
||
}
|
||
if even { // If the base was even, we are finished now
|
||
return z.Set(&res)
|
||
}
|
||
|
||
word = exponent[1]
|
||
for ; curBit < expBitLen && curBit < 128; curBit++ {
|
||
if word&1 == 1 {
|
||
res.Mul(&res, &multiplier)
|
||
}
|
||
multiplier.squared()
|
||
word >>= 1
|
||
}
|
||
|
||
word = exponent[2]
|
||
for ; curBit < expBitLen && curBit < 192; curBit++ {
|
||
if word&1 == 1 {
|
||
res.Mul(&res, &multiplier)
|
||
}
|
||
multiplier.squared()
|
||
word >>= 1
|
||
}
|
||
|
||
word = exponent[3]
|
||
for ; curBit < expBitLen && curBit < 256; curBit++ {
|
||
if word&1 == 1 {
|
||
res.Mul(&res, &multiplier)
|
||
}
|
||
multiplier.squared()
|
||
word >>= 1
|
||
}
|
||
return z.Set(&res)
|
||
}
|
||
|
||
// ExtendSign extends length of two’s complement signed integer,
|
||
// sets z to
|
||
// - x if byteNum > 30
|
||
// - x interpreted as a signed number with sign-bit at (byteNum*8+7), extended to the full 256 bits
|
||
//
|
||
// and returns z.
|
||
func (z *Int) ExtendSign(x, byteNum *Int) *Int {
|
||
// This implementation is based on evmone. See https://github.com/ethereum/evmone/pull/390
|
||
if byteNum.GtUint64(30) {
|
||
return z.Set(x)
|
||
}
|
||
|
||
e := byteNum.Uint64()
|
||
z.Set(x)
|
||
signWordIndex := e >> 3 // Index of the word with the sign bit.
|
||
signByteIndex := e & 7 // Index of the sign byte in the sign word.
|
||
signWord := z[signWordIndex]
|
||
signByteOffset := signByteIndex << 3
|
||
signByte := signWord >> signByteOffset // Move sign byte to position 0.
|
||
|
||
// Sign-extend the "sign" byte and move it to the right position. Value bits are zeros.
|
||
sextByte := uint64(int64(int8(signByte)))
|
||
sext := sextByte << signByteOffset
|
||
signMask := uint64(math.MaxUint64 << signByteOffset)
|
||
value := signWord & ^signMask // Reset extended bytes.
|
||
|
||
z[signWordIndex] = sext | value // Combine the result word.
|
||
|
||
// Produce bits (all zeros or ones) for extended words. This is done by SAR of
|
||
// the sign-extended byte. Shift by any value 7-63 would work.
|
||
signEx := uint64(int64(sextByte) >> 8)
|
||
|
||
switch signWordIndex {
|
||
case 2:
|
||
z[3] = signEx
|
||
return z
|
||
case 1:
|
||
z[3], z[2] = signEx, signEx
|
||
return z
|
||
case 0:
|
||
z[3], z[2], z[1] = signEx, signEx, signEx
|
||
return z
|
||
default:
|
||
return z
|
||
}
|
||
}
|
||
|
||
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
|
||
func (z *Int) Sqrt(x *Int) *Int {
|
||
// This implementation of Sqrt is based on big.Int (see math/big/nat.go).
|
||
if x.IsUint64() {
|
||
var (
|
||
x0 uint64 = x.Uint64()
|
||
z1 uint64 = 1 << ((bits.Len64(x0) + 1) / 2)
|
||
z2 uint64
|
||
)
|
||
if x0 < 2 {
|
||
return z.SetUint64(x0)
|
||
}
|
||
for {
|
||
z2 = (z1 + x0/z1) >> 1
|
||
if z2 >= z1 {
|
||
return z.SetUint64(z1)
|
||
}
|
||
z1 = z2
|
||
}
|
||
}
|
||
|
||
z1 := NewInt(1)
|
||
z2 := NewInt(0)
|
||
|
||
// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
|
||
z1.Lsh(z1, uint(x.BitLen()+1)/2) // must be ≥ √x
|
||
|
||
// We can do the first division outside the loop
|
||
z2.Rsh(x, uint(x.BitLen()+1)/2) // The first div is equal to a right shift
|
||
|
||
for {
|
||
z2.Add(z2, z1)
|
||
|
||
// z2 = z2.Rsh(z2, 1) -- the code below does a 1-bit rsh faster
|
||
z2[0] = (z2[0] >> 1) | z2[1]<<63
|
||
z2[1] = (z2[1] >> 1) | z2[2]<<63
|
||
z2[2] = (z2[2] >> 1) | z2[3]<<63
|
||
z2[3] >>= 1
|
||
|
||
if !z2.Lt(z1) {
|
||
return z.Set(z1)
|
||
}
|
||
z1.Set(z2)
|
||
|
||
// Next iteration of the loop
|
||
// z2.Div(x, z1) -- x > MaxUint64, x > z1 > 0
|
||
z2.Clear()
|
||
udivrem(z2[:], x[:], z1, nil)
|
||
}
|
||
}
|
||
|
||
var (
|
||
// pows64 contains 10^0 ... 10^19
|
||
pows64 = [20]uint64{
|
||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||
}
|
||
// pows contain 10 ** 20 ... 10 ** 80
|
||
pows = [60]Int{
|
||
{7766279631452241920, 5, 0, 0}, {3875820019684212736, 54, 0, 0}, {1864712049423024128, 542, 0, 0}, {200376420520689664, 5421, 0, 0}, {2003764205206896640, 54210, 0, 0}, {1590897978359414784, 542101, 0, 0}, {15908979783594147840, 5421010, 0, 0}, {11515845246265065472, 54210108, 0, 0}, {4477988020393345024, 542101086, 0, 0}, {7886392056514347008, 5421010862, 0, 0}, {5076944270305263616, 54210108624, 0, 0}, {13875954555633532928, 542101086242, 0, 0}, {9632337040368467968, 5421010862427, 0, 0},
|
||
{4089650035136921600, 54210108624275, 0, 0}, {4003012203950112768, 542101086242752, 0, 0}, {3136633892082024448, 5421010862427522, 0, 0}, {12919594847110692864, 54210108624275221, 0, 0}, {68739955140067328, 542101086242752217, 0, 0}, {687399551400673280, 5421010862427522170, 0, 0}, {6873995514006732800, 17316620476856118468, 2, 0}, {13399722918938673152, 7145508105175220139, 29, 0}, {4870020673419870208, 16114848830623546549, 293, 0}, {11806718586779598848, 13574535716559052564, 2938, 0},
|
||
{7386721425538678784, 6618148649623664334, 29387, 0}, {80237960548581376, 10841254275107988496, 293873, 0}, {802379605485813760, 16178822382532126880, 2938735, 0}, {8023796054858137600, 14214271235644855872, 29387358, 0}, {6450984253743169536, 13015503840481697412, 293873587, 0}, {9169610316303040512, 1027829888850112811, 2938735877, 0}, {17909126868192198656, 10278298888501128114, 29387358770, 0}, {13070572018536022016, 10549268516463523069, 293873587705, 0}, {1578511669393358848, 13258964796087472617, 2938735877055, 0}, {15785116693933588480, 3462439444907864858, 29387358770557, 0},
|
||
{10277214349659471872, 16177650375369096972, 293873587705571, 0}, {10538423128046960640, 14202551164014556797, 2938735877055718, 0}, {13150510911921848320, 12898303124178706663, 29387358770557187, 0}, {2377900603251621888, 18302566799529756941, 293873587705571876, 0}, {5332261958806667264, 17004971331911604867, 2938735877055718769, 0}, {16429131440647569408, 4029016655730084128, 10940614696847636083, 1}, {16717361816799281152, 3396678409881738056, 17172426599928602752, 15}, {1152921504606846976, 15520040025107828953, 5703569335900062977, 159}, {11529215046068469760, 7626447661401876602, 1695461137871974930, 1593}, {4611686018427387904, 2477500319180559562, 16954611378719749304, 15930}, {9223372036854775808, 6328259118096044006, 3525417123811528497, 159309},
|
||
{0, 7942358959831785217, 16807427164405733357, 1593091}, {0, 5636613303479645706, 2053574980671369030, 15930919}, {0, 1025900813667802212, 2089005733004138687, 159309191}, {0, 10259008136678022120, 2443313256331835254, 1593091911}, {0, 10356360998232463120, 5986388489608800929, 15930919111}, {0, 11329889613776873120, 4523652674959354447, 159309191113}, {0, 2618431695511421504, 8343038602174441244, 1593091911132}, {0, 7737572881404663424, 9643409726906205977, 15930919111324}, {0, 3588752519208427776, 4200376900514301694, 159309191113245}, {0, 17440781118374726144, 5110280857723913709, 1593091911132452}, {0, 8387114520361296896, 14209320429820033867, 15930919111324522}, {0, 10084168908774762496, 12965995782233477362, 159309191113245227}, {0, 8607968719199866880, 532749306367912313, 1593091911132452277}, {0, 12292710897160462336, 5327493063679123134, 15930919111324522770}, {0, 12246644529347313664, 16381442489372128114, 11735238523568814774}, {0, 11785980851215826944, 16240472304044868218, 6671920793430838052},
|
||
}
|
||
)
|
||
|
||
// Log10 returns the log in base 10, floored to nearest integer.
|
||
// **OBS** This method returns '0' for '0', not `-Inf`.
|
||
func (z *Int) Log10() uint {
|
||
// The following algorithm is taken from "Bit twiddling hacks"
|
||
// https://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
|
||
//
|
||
// The idea is that log10(z) = log2(z) / log2(10)
|
||
// log2(z) trivially is z.Bitlen()
|
||
// 1/log2(10) is a constant ~ 1233 / 4096. The approximation is correct up to 5 digit after
|
||
// the decimal point and it seems no further refinement is needed.
|
||
// Our tests check all boundary cases anyway.
|
||
|
||
bitlen := z.BitLen()
|
||
if bitlen == 0 {
|
||
return 0
|
||
}
|
||
|
||
t := (bitlen + 1) * 1233 >> 12
|
||
if bitlen <= 64 && z[0] < pows64[t] || t >= 20 && z.Lt(&pows[t-20]) {
|
||
return uint(t - 1)
|
||
}
|
||
return uint(t)
|
||
}
|