Files
mev-beta/pkg/uniswap/pricing.go
Krypto Kajun 850223a953 fix(multicall): resolve critical multicall parsing corruption issues
- Added comprehensive bounds checking to prevent buffer overruns in multicall parsing
- Implemented graduated validation system (Strict/Moderate/Permissive) to reduce false positives
- Added LRU caching system for address validation with 10-minute TTL
- Enhanced ABI decoder with missing Universal Router and Arbitrum-specific DEX signatures
- Fixed duplicate function declarations and import conflicts across multiple files
- Added error recovery mechanisms with multiple fallback strategies
- Updated tests to handle new validation behavior for suspicious addresses
- Fixed parser test expectations for improved validation system
- Applied gofmt formatting fixes to ensure code style compliance
- Fixed mutex copying issues in monitoring package by introducing MetricsSnapshot
- Resolved critical security vulnerabilities in heuristic address extraction
- Progress: Updated TODO audit from 10% to 35% complete

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-17 00:12:55 -05:00

151 lines
4.0 KiB
Go

package uniswap
import (
"math"
"math/big"
"github.com/holiman/uint256"
)
const (
// Q96 represents 2^96 used in Uniswap V3 sqrtPriceX96 calculations
Q96 = "79228162514264337593543950336" // 2^96 as string to avoid overflow
// Tick spacing for different fee tiers
LowTickSpacing = 10
MediumTickSpacing = 60
HighTickSpacing = 200
)
// SqrtPriceX96ToPrice converts sqrtPriceX96 to a price
// Price is represented as token1/token0
func SqrtPriceX96ToPrice(sqrtPriceX96 *big.Int) *big.Float {
// price = (sqrtPriceX96 / 2^96)^2
// price = sqrtPriceX96^2 / 2^192
// Initialize global cached constants
initConstants()
// Validate input
if sqrtPriceX96 == nil || sqrtPriceX96.Sign() <= 0 {
return new(big.Float).SetFloat64(0.0)
}
// Convert to big.Float for precision
sqrtPrice := new(big.Float).SetPrec(256).SetInt(sqrtPriceX96)
// Calculate sqrtPrice^2
price := new(big.Float).SetPrec(256)
price.Mul(sqrtPrice, sqrtPrice)
// Divide by 2^192 using global cached constant
denominator := new(big.Float).SetPrec(256).SetInt(GetQ192())
price.Quo(price, denominator)
return price
}
// PriceToSqrtPriceX96 converts a price to sqrtPriceX96
func PriceToSqrtPriceX96(price *big.Float) *big.Int {
// sqrtPriceX96 = sqrt(price) * 2^96
// Initialize global cached constants
initConstants()
// Calculate sqrt(price)
input := new(big.Float).SetPrec(256).Copy(price)
sqrtPrice := new(big.Float).SetPrec(256).Sqrt(input)
// Multiply by 2^96 using global cached constant
multiplier := new(big.Float).SetPrec(256).SetInt(GetQ96())
sqrtPrice.Mul(sqrtPrice, multiplier)
// Convert to big.Int
sqrtPriceX96 := new(big.Int)
sqrtPrice.Int(sqrtPriceX96)
return sqrtPriceX96
}
// TickToSqrtPriceX96 converts a tick to sqrtPriceX96
func TickToSqrtPriceX96(tick int) *big.Int {
// sqrtPriceX96 = 1.0001^(tick/2) * 2^96
// Initialize global cached constants
initConstants()
// Calculate 1.0001^(tick/2)
// For better precision, especially for large tick values, we use logarithms
// 1.0001^(tick/2) = e^(ln(1.0001) * tick/2)
lnBase := GetLnBase() // ln(1.0001) ≈ 9.999500016666e-05
logResult := lnBase * float64(tick) / 2.0
result := math.Exp(logResult)
// Convert to big.Float
price := new(big.Float).SetFloat64(result)
// Multiply by 2^96 using global cached constant
price.Mul(price, GetQ96Float())
// Convert to big.Int
sqrtPriceX96 := new(big.Int)
price.Int(sqrtPriceX96)
return sqrtPriceX96
}
// SqrtPriceX96ToTick converts sqrtPriceX96 to a tick
func SqrtPriceX96ToTick(sqrtPriceX96 *big.Int) int {
// tick = log_1.0001(sqrtPriceX96 / 2^96)^2
// tick = log_1.0001(price)
// tick = 2 * log_1.0001(sqrtPriceX96 / 2^96)
if sqrtPriceX96.Cmp(big.NewInt(0)) <= 0 {
return 0 // Invalid input
}
// Initialize cached constants
initConstants()
// Convert to big.Float
sqrtPrice := new(big.Float).SetInt(sqrtPriceX96)
q96Float := GetQ96Float()
// Calculate sqrtPriceX96 / 2^96
ratio := new(big.Float).Quo(sqrtPrice, q96Float)
// Calculate ln(sqrtPriceX96 / 2^96) to avoid potential overflow
// tick = 2 * ln(sqrtPriceX96 / 2^96) / ln(1.0001)
lnRatio, _ := ratio.Float64()
lnValue := math.Log(lnRatio)
// Calculate tick
tick := int(2.0 * lnValue * GetInvLnBase())
return tick
}
// GetTickAtSqrtPrice calculates the tick for a given sqrtPriceX96 using uint256
func GetTickAtSqrtPrice(sqrtPriceX96 *uint256.Int) int {
// This is a simplified implementation
// In practice, you would use a more precise logarithmic calculation
// Convert to big.Int for calculation
sqrtPriceBig := sqrtPriceX96.ToBig()
return SqrtPriceX96ToTick(sqrtPriceBig)
}
// GetNextTick calculates the next initialized tick
func GetNextTick(currentTick int, tickSpacing int) int {
// Round down to nearest tick spacing
tick := ((currentTick / tickSpacing) + 1) * tickSpacing
return tick
}
// GetPreviousTick calculates the previous initialized tick
func GetPreviousTick(currentTick int, tickSpacing int) int {
// Round down to nearest tick spacing
tick := (currentTick / tickSpacing) * tickSpacing
return tick
}